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The Drag-Free Satellite 
BENJAMIN LANGE * 

Lockheed Missiles and Space Company, Palo Alto, Calif. 

A scientific earth satellite that is guided in a drag-free orbit by a shielded, free-falling proof 
mass has been proposed by a number of investigators. This paper examines the feasibility 
and some of the applications of this scheme. The control and guidance system is analyzed 
with respect to system performance and gas usage requirements. The principal trajectory 
errors that are due to vehicle gravity, stray electric and magnetic fields, and sensor forces are 
investigated. I t  is found that drag and solar radiation pressure forces may be effectively re- 
duced by three to five orders of magnitude for 100- to 500-mile orbits and that the deviation 
from a purely-gravitational orbit may be made as small as 1 m/yr. Such a satellite could be 
used to make precise measurements in geodesy and aeronomy; and, if a spherical proof mass 
is spun as a gyroscope, its random drift rate would probably be less than 0.1 sec-arc/yr. Such 
a gyroscope could be used to measure the effects that would ultimately limit the performance 
of the best terrestrial or satellite-borne gyros, and it might also be good enough to perform the 
experiment proposed by G. E. Pugh and L. I. Schiff to test general relativity. 

Nomenclature 

= direction cosine matrix 
= ball projected area 
= area of capacitive plates 
= satellite projected area 

C = principal moments of inertia of gyrorotor 
= satellite orbit semimajor axis 
= ellipsoidal principal axes of gyrorotor 
= magnetic induction vector 
= earth’s magnetic induction 
= uniform external field in the absence of the rotor 
= component of Bo along a given rotor principal axis 
= component of B parallel to W B  

= component of B perpendicular to W B  

= atmospheric rotation resistance coefficient 
= drag coefficient 
= speed of light in vacuum 
= normalized drag force 
= a distance characteristic of vehicle size 
= width of light beam 
= cavity radius or characteristic size 
= capacitive pickup gap size 
= departure of proof mass from the point where 

the electric forces from a capacitive pickup are 
zero 

= eccentric anomaly or electric field or Young’s modulus 
= average value of the electric field over the surface 

of the proof mass 
= maximum value of the electric field over the 

surface of the proof mass 
= normal component of electric field 
= eccentricity of the satellite orbit or of the gyrorotor 

considered as an oblate spheroid or electronic 
charge 

= charge to mass ratio of the electron 
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el, e2 = gyrorotor eccentricities 
e, = unit vector parallel to 
Fcs = control force on the satellite 
FD = all terms on the right side of Eq. (6) except 

-(me/ms)Fcs 
Fdrag = aerodynamic drag force plus solar radiation 

FGB = force of gravity on the ball 
FGS = F G ~  = force of gravity on the satellite 
AFG = FGB - (mB/ms)Fcs 
Fs 
FPB = any nongravitational force on the ball ex- 

FPS = sum of all forces on the satellite except those 

FYB = force that the satellite exerts on the ball 
f = a specific force or acceleration, F/m 
fc = control acceleration, - (I/ms)Fc 
f D  = disturbing acceleration, - (I/ms)Fo 

.fDgas = specific force on the ball due to random 
molecular collisions 

~ D B C ,  f ~ ~ q ,  f ~ ~ f  
f G B  = gravitational acceleration on the ball, FQB/ 

fSB = FsB/mB 
fPB - FpB/mB 
G = universal gravitational constant 
g H  = gyromagnetic ratio of a material 
Se = acceleration of gravity at the earth’s surface 
H 
Ho = &/PO 
Ho‘’ = component of Ho along a given rotor prin- 

H R  
h = altitude 
hB = angular momentum of the ball 
hp = perigee altitude 
hR = reference altitude at which the atmospheric 

hs = length of cylindrical satellite 
I S P  = control gas specific impulse 
II, I% 1 3  = satellite principal moments of inertia 
k = reciprocal slope of contactor switching line 

force 

= any force acting on the satellite 

cept those due to the satellite 

due to gravity and drag 

fDB = fPB + fSB 

= components of fDB along the t , ~ ,  [ axes 

mB 

= pressure scale height or magnetic field 

cipal axis 
= scale height at reference attitude hR 

density scale height is linearized 

or Boltzmann constant 
K, K? = cf. Eqs. (BlLB5) 
Kc = cf. Eq. (B19) 
Mi= = position feedback gain 
MV = velocity feedback gain 

= moment or torque vector 
iMgZ, M B ~ ,  M B ~  = components of the gyrorotor torques 

= component of M parallel to W E  

= component of M perpendicular to W B  ml 
MI, 
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= average molecular mass of the atmosphere 42 = second term in series expansion of gravita- 
in the satellite tional potential of the satellite 

rR 

rc, rc’ 

SB 
T 

Tc 
T D  

TFL 
T L  
To 
l ’w  
Tcw 
T ,  
TU 
T I ,  Tz 
t 
t i  

P 

PR 

mass of the ball, proof mass, or gyrorotor 
mass of earth 
mass of control gas 
mass of control gas expelled in time T 
magnetic moment 
magnetic moment of the ball 
magnetic moment of the satellite 
mass of the satellite and control gas 
atmospheric velocity resistance coefficient 
charge on the ball 
radius of the ball or gyrorotor 
radius of the earth 
radius vector 

all defined by Fig. 1 
radius vector from earth to  satellite 
distance to a point charge from the center 

of a spherical cavity 
radius from earth’s center to reference alti- 

tude TR = Re 4- hg 
rc written as column matricies in rotating 

and nonrotating reference frames, respec- 
tively 

surface area of the gyrorotor 
period of one control limit cycle or absolute 

time when control is on 
time when control is off 
fuel lifetime 
time lag 
orbit period 
period of one limit cycle whenfn = 0 
total time control is on during Tw 
translation control time constant 
attitude or rotation control time constant 
noise filter time constants 
time 
assumed thickness or depth of penetration of 

time after perigee passage when the control 

potential between the ball and the cavity 
capacitive pickup input voltage 
velocity of the satellite in orbit 
light power incident on the ball 
weight of the control gas 
weight of the wasted control gas 

limit cycle points defined by Fig. 5 
gyrorotor principal axes 
components of rc 
slope of the density scale height curve 
(1 + a ) / a  
angles between W B  and X B ,  Y B ,  ZB 

contactor threshold level 
gyrorotor ellipticities 
permittivity of free space 
ellipticity due to  a built in or permanent 

temperature 

surface eddy currents 

limit cycle first begins to saturate 

bulge 
ellbticitv due to a bulge caused bv rotation 

& “  

equivalent initial attitide rate caised by an 
impulsive disturbance 

permeability of free space 
rotating locally level system of relative 

coordinates with their origin in a nominal 
circular orbit about the earth 

atmospheric mass density 
atmospheric mass density at the reference 

mass density of the proof mass or gyrorotor 
gyrorotor electrical conductivity 
rms position error 
rms velocity error 
angle of the gyrospin axis with respect to 

some initial reference or gravitational po- 
tential function 

altitude 

Subscripts 
B 
b 
C 
D 
DB 
h a g  
E, e 
F L  
G 
9 
H 
I 
K 
L 
m 
n 
0 
P 

Q 
R 
r 
S 
T 
v, x 

Z 
X 

w 

= peak precession rate of the gyrospin axis 
= mean square value of $ when the gyro is dis- 

turbed by random atmospheric torques 
= magnetic susceptibility of isotropic material 
= magnetic susceptibility tensor of anisotropic 

= two of the eigenvalues of xm for the primed 

= angle between W B  and hs 
= angular velocity of the gyrorotor 
= components of wg in the rotor principal axes 
= orbit angular velocity 
= satellite angular velocity 
= components of wg in the satellite principal 

material 

and double primed axes, respectively 

axes 

= ball (proof mass or gyrorotor) or bottom 
= beam 
= control center, control, capacitive 
= disturbing 
= deadband 
= atmospheric drag plus solar radiation force 
= earth 
= fuel lifetime 
= gravitational 
= gas or gap 
= magnetic 
= inertial 
= center of gravity 
= left or lag 
= mass 
= normal 
= orbit 
= perturbing or permanent or position or 

= charge 
= right or reference or rotation 
= translation 
= satellite or switch 
= top 
= vehicle or velocity 
= position 
= zero self-gravity 
= rotation 

perigee 

Tntroduction 

HE term “drag-free satellite” as used in this paper will T refer to a small spherical proof mass or ball inside of a 
completely enclosed cavity in a larger satellite. The outer 
satellite has a jet activated translation control system that 
causes it to pursue the proof mass such that the two never 
touch. Since the cavity is closed, the ball is shielded from 
gas drag and solar radiation pressure; and, in the ideal case 
when the effects of other disturbing forces are negligible, the 
orbit of the proof mass will be determined only by the forces 
of gravity. The only disturbing forces that can act on the 
proof mass will arise from the satellite itself or from any 
interactions that can penetrate the shield. Forces due to 
the satellite can arise from vehicle gravity, stray electric and 
magnetic fields, and the interaction of the position sensor. 

A similar technique was first used by researchers into the 
state of weight1essness.l Airplanes were flown in weightless 
trajectories by keeping a small object centered in free space 
in the cabin. The same system has also been suggested as a 
guidance scheme to cause ballistic missiles to re-enter along 
a path that is undisturbed by aerodynamic forces. Ericke2 
also has suggested launching a half-airplane half-satellite 
that would fly at altitudes between 90 and 180 km and use 
some thrust to cancel drag. He calls such a vehicle a “satel- 
loid” and points out that it may also fly at subcircular ve- 
locities using aerodynamic lift to sustain it. 

The first suggestions of this scheme purely in connection 
with a satellite apparently were made independently from 
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Fig. 1 Drag-free satellite geomelry. 

1959 to 1961 by a number of investigators. Schwarzschild3 
at Princeton, Ferrell (in an unpublished report),I’J Pugh4 
and MacDonald5 a t  The University of California at Los 
Angeles have proposed various forms of the drag-free satellite. 
It was also suggested independently by C. W. Sherwin of 
Aerospace and by the author a t  the Stanford Conference on 
Experimental Tests of Theories of Relativity in July 1961.6 
Several possible uses or missions for such a satellite have been 
proposed. 

1. Geodesy: The departure of the figure of the earth 
from a perfect sphere introduces higher harmonics in the 
earth’s gravitational potential. These harmonics perturb 
earth satellite orbit elements, and it is possible to measure 
the harmonics of the earth’s gravitational field by observing 
the changes in a satellite’s orbit elements. However, the 
atmosphere also perturbs the satellite elements, and this 
effect must be corrected out in accurate geodetic measure- 
ments. These techniques are exphined in detail by K a ~ l a . ~  
A drag-free satellite would remove the necessity of correcting 
for the uncertainties of atmospheric drag and solar radiation 
pressure in satellite observations of the higher harmonics of 
the earth’s gravitational field. In addition, operation would 
be possible at lower altitudes where the effects of higher har- 
monics are stronger, but this advantage must be weighed 
against shorter fuel lifetime. 

2. Aeronomy: Conventional upper atmosphere density 
measurements* depend on observing the change in the 
satellite period over several orbits and essentially determine 
the average density over this time and altitude range. This 
type of data is not as useful as instantaneous density measure- 
ments. The proof mass in the satellite essentially constitutes 
a very sensitive accelerometer that could be used to measure 
the instantaneous gas drag and radiation pressure a t  any 
altitude. For a spherically shaped satellite, CD + 2 in free 
molecular flow a t  high Mach numbers regardless of the ac- 
commodation coefficient; and the calibration of the instru- 
ment would not depend on knowing the accommodation 
coefficient as does, for example, Sharp’s density gage.g The 
actual drag forces may be inferred from the jet plenum 
chamber temperatures and pressures, from the relative 
motion between the proof mass and the satellite, or may be 
measured bv measuring the forces between the jets and the 
satellite with strain gages. The latter technique is feasible 
because the jet forces are typically one to three orders of mag- 
nitude larger than the drag force because the jets are on for 
only a small fraction of the total time. 

3. Precision gyroscopes: If the spherical proof mass is 
spun a t  a very rapid rate, it becomes a gyroscope. Since 

there are no support forces, the only disturbing torques arise 
from gravity gradient effects, electromagnetic interactions, 
relativity effects, and readout torques. It appears possible 
to construct a gyroscope whose random drift rates would be 
less than 0.1 sec-arc/yr. Such an instrument would be very 
useful to study the effects not connected with the support 
forces which would ultimately become important in the con- 
struction of extremely low-drift gyroscopes, and it would be 
possible to do this many years in advance of the time when 
it might be possible to construct such instruments on earth. 

4. The Pugh-Schiff gyroscope experiment: Schiff’O has 
shown that, although Newtonian theory predicts no precession 
of the spin axis of a spherically symmetric gyroscope in free- 
fall about the earth, general relativity predicts a geodetic 
precession arising from motion through the earth’s gravita- 
tional field and a Lense-Thirring precession due to the differ- I 
ence between the gravitational field of a rotating and non- 
rotating earth. The geodetic precession in a satellite is about 
7 see-arc/yr, and the Lense-Thirring precession is about 0.1 
sec-arc/yr. The design and preliminary development 
of this experiment in a satellite has been under way a t  Stan- 
ford University for about two years, and it is described by 
Cannon.ll 

5.  T i m e  dependence of gravity: Dicke3 has suggested 
that such a satellite could be used as a clock whose rate would 
depend on the universal constant of gravity G. Such a clock 
could be compared to precision atomic clocks on earth. Any 
change in the rate of the gravitational clock could be inter- 
preted as a change in the “constant” G. The value of G as 
a function of time has important consequences in the theories 
of relativity. The tracking accuracies necessary for this ex- 
periment are dictated by the very small size of the effect 
(about one part in 10I0/yr), which yields an accumulated 
lag in the satellite’s position of about 0.2 see-arc/yr. This is 
discussed in Ref. 12 in detail. 

6.  Orbit sustaining: For certain missions, it is desirable 
to operate a t  very low altitudes. Such a satellite would 
quickly re-enter if its drag were not counteracted in some 
manner. Rider,I3 Bruce, l4  and Robersonls have discussed 
various ways of doing this. The freefalling ball could be 
used to control thrust such that the satellite would remain in 
orbit longer than it would without drag cancellation. This 
technique also would be especially useful to control precisely 
the entry points of satellites and large potentially dangerous 
spent booster stages. It also could be used to establish a 
true equiperiod orbit (where the orbit dips very low into the 
atmosphere) for rendezvous practice. 

7 .  Zero-g laboratories: It has been proposed that the 
central parts of manned space stations be used as zero-g 
laboratories. For experiments of long duration, such a drag 
cancellation scheme would be necessary to prevent the ap- 
paratus from contacting the laboratory walls. This paper 
will examine some of the problems associated with the de- 
sign and use of drag-free satellites. 

Equations of Motion 

The object of this section is to derive the relevant equations 
of motion that will be used in the analysis and synthesis of 
the control systems and in the computation of the magnitude 
and effects of the system errors. 

General Equations 

Figure 1 shows the geometry for a satellite with a proof mass 
in freefall and with three-axis translation control. In gen- 
eral, the center of mass and the center of gravity of the 
satellite do not coincide; and, in addition, the center of 
gravity is not even fixed in the body but is a function of body 
orientation. Furthermore, although the design objective 
would be to make the control center (the point a t  which the 
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position indicator reads zero, or, equivalently, the point to 
which the control system tries to drive the ball), the center 
of mass, and a point of zero self-gravity? all coincide; be- 
cause of various uncertainties, these points will not be the 
same and the variations cannot be neglected. 

If the vectors rzB, T I S ,  and rcB are abbreviated as rB, rs ,  and 
rc, respectively, the equation of motion of the proof mass or 
ball is 

(1) 1 FGB + FSB + FPB 

and the equation of motion of the center of mass of the satel- 
lite is 

miis = FGS + FPS + FCS - FSB (2 )  

Since r B  = r s  + rSB, ( 1 )  and (2) may be combined to yield 
the equation of the ball in relative vehicle coordinates 

Notice that, when the equation is written in this form, any 
forces applied to the satellite appear to be applied to the 
proof mass through the scale factor ( - v L B / ~ s ) .  It will often 
be convenient to speak of “applying a force to the proof 
mass,” and this terminology will mean - (m~/ms)Fs when- 
ever the force is actually applied to the satellite. 

Whereas the vector rSB describes the position of the proof 
mass with respect to the center of mass of the satellite, the 
position sensing apparatus in the satellite actually measures 
the vector rc where rSB = rsc + rc. The vector rsc will 
be assumed to be fixed in the satellite; or equivalently, it will 
be assumed that the relative motion of the center of mass and 
the control center during the expulsion of gas may be 
neglected. 

With this assumption, the equations of motion now become 

where 

~ F G  4 [FGB - (ms /ms)Fos]  

Because of the rotation ws of the satellite, 

PSC + PC = G + 2 0 ~  x f c  + OS x (rc + rsc) + 
ws X [OS X (rc + rsc)l (5)$ 

and the relative translation equations, written in terms of 
the vector rc, measured by the position sensor, are 

mB[% + 20s X b + 0 s  x rc + OS x (OS x roll = 

mB[--cj~ X rsc - ws X (OS X r d l  + AFG + 

The special cases of Eq. (6) for various types of attitude con- 
trol are given in Appendix A. 

~ 

A point of zero self-gravity or ZSG point is a point where 
all of the gravitational forces due to the satellite alone sum to  
zero (cf. Appendix B). 

$ For any vector such as rc, the notation fc  will mean the time 
rate of change of rc seen by an observer in a reference frame 
that is nonrotating with respect to  inertial space. The notation 
fc will mean the time rate of change of rc seen by an observer in 
a reference frame that is nonrotating with respect to  the satellite 
so that ic = & + OS X rc. 

The Forcing Terms and Their Relative Magnitudes 

Since lhe satellite i s  constrained by the translation control sys- 
tem to fo!low the proof mass, the orbit of the satellite will be de- 
termined solely hy Eq. (1).  The proof mass will be disturbed 
f r o m  a purely gravitational orbit only by the lerrns FsB and FPB. 
These are shown in the section on trajectory error to corre- 
spond to accelerations that are less than 1O-l1ge.§ 

The terms on the right-hand side of Eq. (6) determine the rel- 
ative motion between the satellite and the ball, and their magni- 
tudes are important only in the translation control system. 

If one considers only the gravitational attraction of a 
spherical earth, 

Thus, for low orbits, the aerodynamic drag force Fdras is the 
dominant translation disturbance, and, in order that the 
control keep the ball centered, the average control force 
must equal the average drag force: 

(Fcs),, - (FdrSJLY (12) 

so that Fdrsg may be measured by observing FCS. 

Control Problem 

The object of this section is to discuss the basic translation 
control problem (including fuel consumption) associated 
with the operation of a nonrotating drag-free satellite. The 
case where the satellite does not rotate with respect to an 
inertial reference is of interest for precision gyroscope ex- 
periments where the gyroscope spin axis must be compared 
with a fixed direction in inertial space. In addition, omitting 
the spin makes it easier to present the basic properties of the 
translation control without the added complexity due to the 
rotation. The control must accomplish two things: 1) keep 
the vector rc within some specified bound in the presence of 
the disturbing forces, and 2) do this with a minimum ex- 
penditure of fuel. The bound on rc will be dictated by the 
type of mission. For example, in the case of an aeronomy 
mission, it is merely necessary that the proof mass not con- 
tact the cavity walls very much, and, for geodesy experi- 
ments, the proof mass must be controlled in such a manner 
that the interactions between it and the satellite are as small 
as possible. For the precision gyroscope experiment, how- 
ever, it  is necessary that the rotor never contact the cavity 
walls; and, for some readout schemes, it is necessary that 
the rotor be very stationary with respect to the satellite dur- 
ing the readout period. 

$ It is not correct to conclude immediately from these num- 
bers that the drag is only cancelled to 10-llg, since the effect 
of FSB and FPB on the ball’s orbit is not the same as the drag. 
This is true because the drag always acts along the velocity 
vector. See the section on “System Errors.” 
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I l To  
TIME IN ORBIT 

Disturbing Acceleration Due to Drag 

If part of the subscripts are dropped, Eq. (A2) becomes 

$0 fD + fC (13) 
For most orbits, the dominant contribution t o f ~  is the at- 
mospheric drag, and it is instructive to compute the drag as a 
function of time and orbit. The linear scale height model of 
the atmosphere as discussed by Smeltle provides a more ac- 
curate representation than the conventional constant scale 
height exponential model and will be used in this calculation. 

The drag force is given by 

Pdrac = 1/2pVo2C~As (14) 

where the density p is obtained by integrating the hydro- 
static equation using a scale height H ,  which varies linearly 
with altitude with slope CY as shown in Eq. (15) : 

(15) 
p = p R ( H d H ) B ( r E s / r R ) z  (16) 

?"E8 = a(1 - e cosF) (17) 

(18) 
1 + e cosE geRe2 1 + e cosE 
1 - e cosE a 1 - e COSE 

ha is the reference altitude about which the scale height is 
linearized. Substituting (15-18) into (14) yields the normal- 
ized drag force D,: 

H = H R +  CY(^ - h ~ )  P 4 (I + a) /a  

- -  vo2 = wo2a2 - 

Equation (19) is plotted in Fig. 2 using constants interpolated 
from the 1962 ARDC Model Atm0~phere.l~ The following 
values for the constants were assumed: 

h~ = 400 km = 250 statute miles 
H R  = 76 km = 47 statute miles 

R, = 6380 km = 3960 statute miles (20) 
CY = +  
P R  = 6.5 X g/cm3 

Fig. 2 Nermalized drag com- 
puted from a linear scale 
height model of the atmos- 

phere. 

1/To t/To 

As an example, consider a satelIite with CD = 2 and As  = 

0.5 m2 = 5.38 ft2; then 

rRAsp& = 2.15 X IOp4 newtons = 4.83 x lb (21) 

and, if msge = 445 newtons = lOa Ib, then rZASpRge ex- 
pressed in ge)s is 

r R A s p R / m s  = 4.83 X lo-? (22) 

Thus (&/rR)' times Eq. (22) gives the drag acceleration in a 
nominal circular orbit a t  the reference altitude of 400 km, 
and Eq. (21) or (22) may be used in conjunction with Fig. 2 
to determine the drag forces for other orbits. 

From the preceding considerations, it is clear that the con- 
trol system will have to zero the proof mass in the presence 
of a disturbing force, which could vary several orders of 
magnitude over one orbit period depending on the eccentricity 
and perigee altitude. 

Contactor Translation Control 

Since leak-free valves for the control jets are most easily 
built when they are of the full-on or full-off type, it is con- 
venient to use on-off or contactor translation control in the 
satellite. The general problem of using contactor control 
with linear switching to zero a dynamical plant is discussed 
in a number of basic control theory texts. See, for example, 
Fliigge-Lotzl* or Graham and McRuer.l9 The general 
state-of-the-art of contactor control is reviewed by Flugge- 
Lotz in Ref. 20. 

The control of the nonrotating drag-free satellite is the 
same as the classical control problem discussed in the fore- 
mentioned references if the drag force is considered as a con- 
stant over one control limit cycle. For most orbits this is a 
reasonable assumption. The period of one limit cycle is 
approximately { [8(xs + x~)]/f~]l/~ = 40 secforxs + ZL = 
0.1 cm andfn = 5 x cm/sec2. 

As can be seen from Fig. 2, this number can vary from one 
to several thousand seconds. For simplicity it will be as- 
sumed in the following sections that f~ is approximately con- 
stant during this time interval although this is not true when 
{ [ 8 ( ~  + x~)]/fD]~/~ is of the same order as one orbit period. 
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Minimun,\Fuel Consumption Limit Cycles 

When “on-off’ or contactor control is used, there is nearly 
always the possibility of limit cycles near the origin due to 
threshold, dead-zone, and delay in the sensors and actuators. 
The effect of these limit cycles on gas consumption is an 
important question. Because of the presence of f D ,  it is 
possible to  find limit cycles that consume no more fuel than 
that which is required to offset the effect of f D .  Indeed, 
within certain limits, the amount of gas consumed is inde- 
pendent of the functional form of f D .  Since, for a gas jet, 

li’c = -gJsPmg (23) 

(244 

(24b) 

As long as the control always acts such that the sign of m, 
is the same as the sign of F o  (Le., if the control always op- 
poses the drag force), then, durinr any period of time when 
the sign of F D  does not change, 1 m, I is either always + m, or 
always -m,. Fordefiniteness assume that F D  3 0. Then 
in, 3 0, and I m I = m so that the total amount of fuel con- 
sumed in time T ,  m,(T) is given by 

Eq. (13) becomes 

nzdc  = - (mdms)FD + (mB/ms)geIspm, 

In, = (1/9CIBP) [Fo + ms2cI 

01‘ 

m,(T) 4 JOT I mol dt = SoT m,dt = 

Under these circumstances, the value of m,(T) depends only 
on the right side of Eq. (25) and not on the functional form 
of m,. For the case of a limit cycle of period T ,  the gas 
consumed, m,(T), depends only on the integral soT FDdt 

Furthermore, 

is the minimum amount of fuel needed during one period to 
hold the system in a limit cycle near the origin, and the system 
must consume this much fuel to balance out the effect of the 
drag force. 

It is instructive to examine this in detail for the case where 
F D  is a constant. Figure 3 shows the phase plane plot of one 
possible limit cycle of period T bounded by a maximum ex- 
cursion (xn - ZL). The control jet switches on when xc = 
xs and XC = XT and switches off a t  xc = xs and PC = xB. 

The gas used per cycle is 

However, since the time is given by (PT - 2 ~ )  divided by 
the acceleration 

-Tc(Fc + F D )  = TDFD 

so that 

TD/Tc = - [(Fc + F D ) / F D ]  (27) 
and, by substituting (27) into (26), the gas consumed per 
limit cycle is 

- 

m,(T) = FDT/g,Isp (28) 

X C  

i =Tc +TD 

Fig. 3 Typical control limit cycle. 

As long as the control force always opposes PO, the gas con- 
sumed does not depend on the shape of the control force im- 
pulse but only on its area, which must be equal to FDT. 
This very simple but important result makes it possible to 
compute the total fuel consumption by integrating the drag 
force over a complete orbit: 

m0 1 TO - 
orbit geTSp = - Jo Fd,,,dt = 

(29) 
2~ (1 - e COSE - e2 cos2E + e3 cos3E)dE 

s o  11 + [Cr(a - TR - aecosE)]/HR]’ 

Surprisingly, this integral is fairly easy to evaluate by con- 
tour integration. Figure 4 shows a series of fuel lifetime 
plots obtained by evaluating this integral. 

Bruce14 has computed the fuel expenditure necessary to 
sustain a satellite in a drag-free circular orbit. He compares 
continuous correction with a series of discrete corrections in 
which the orbit is allowed to decay for a fixed period of time 
and then is restored with a Hohman transfer. He concludes 
that continuous correction requires less fuel than the series of 
discrete corrections. This result also follows from the con- 
clusion of the previous section since the control force acts in 
the same direction as the drag force during the second cor- 
rective impulse of a Hohman transfer and since the discrete 
application allows the orbit to decay into the denser atmos- 
phere. 

Control with Linear Switching, Threshold, and Deadband 

In the previous sections it  was shown that any control that 
does not allow the proof mass to touch the cavity walls and 
that always acts such as to oppose the drag will use the 
minimum amount of fuel, and this minimum was computed 
using a linear density scale height model of the atmosphere. 
The question arises how a control that has or approximates 
these properties might be mechanized. This section will 
consider one possible realization using linear switching, 
threshold, and deadband. B 

Figure 5 shows typical switching surfaces in the phase 
plane with f D  always acting to the right. The finite width 
of the switching lines is due to contactor threshold that i s  
built into the system as a design parameter 8. The loop 
time delay TL, which is primarily due to the time required to 
operate the gas valves, is of the order of 5 to 25 msec and is” 
negligible for most limit cycles. When the time delay is not 
negligible, its effect is to alter the vertical width of the switch- 
ing line an amount fCTL and to alter its slope by TL/k2. 

f For other approaches see Gaylord and Keller21 and Dahli, 
Aldrich, and Herman.22 
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Fig. 4 Fuel lifetime of a drag-free satellite. 

Thus, time delay limits the system only in that it establishes 
a minimum width of the switching line. 

Table 1 shows several typical limit cycles for three perigee 
altitudes. It is assumed in all calculations that f~ is con- 
stant over one limit cycle. The minimum value of xs - 
zL occurs at perigee and is chosen as 0.01 em in this example. 
The first value for the drag acceleration in each block is the 
value obtained at perigee from Eq. (22) and Fig. 2, and it 
determines the required control acceleration and the size of 
kT - kB and, hence, the value of 6 since 6 = 1/2k(kT - k B ) .  
Limit cycles for values of f~ equal to one-tenth and one- 
hundredth of that at perigee are also shown, and these 
correspond to higher altitudes in the orbit. A value of f D  

which is 10P of that at perigee would, of course, bang 

DEAD ZONE \ SWITCHING LINE KT LEFT JET 

f ,=0  (xc-xS)+k ic= 0 

Fig. 5 On-off control switching lines. 

against the left switching line, but the values corresponding 
to the full unsaturated limit cycle are shown here for com- 
parison. 

The last line in each block shows the values for saturated 
limit cycles where f~ is taken as zero. This limit cycle has 
the form shown in Fig. 6 and, of course, wastes gas. Here 
2x8 is taken as 0.1 cm, and TC is the total time the control 
acts during the cycle. For the 300-mile orbit, it is assumed 
that fc can be no smaller than 1OW2 cm/sec2. This corre- 
sponds to a typical lower limit of 10-3-lb thrust on a 100-lb 
vehicle. 

It has been suggested a number of times to the author that 
the required thrusts would be much too small, or equiva- 
lently, the jet nozzle areas or chamber pressures required 
would be much too small to make cold gas jet control of a 
drag-free satellite feasible. This is not so. Commercial 
cold gas thrust systems are available "off-the-shelf" with 
thrusts in the lop4- to 10-2-lb range and with rise and fall 
times on the order of a few milliseconds. The ratio Tc/TD 
is equivalent to an effective thrust attenuation factor and is 
the basic reason why very small jets are not required. Thus, 
it is seen from Table 1 that the control requirements are 
reasonable. 

Gas Consumed by a Nonideal Control System 

In  the examples shown, when the drag acceleration falls 
below one-tenth of its value a t  perigee, the jet for the left 
switching line begins to fire and gas is wasted. In general, 
it  is impossible to avoid wasting some gas in high orbits 
since, as f D  approaches zero, the limit cycle becomes so long 

Table 1 Typical limit cycles for l/s2 plant with drag (cf. Figs. 5 and 6) 

Tc T C ,  ~~ 

hp ge's cm cm/sec see ge'S cm msec T D  
fD," Xs - XL, i!r - XB,b TD, Ifc + f D (  ,' XR - X S ,  

161 km or 100 0.73 X 0.76 X lo-' 1.1 0.93 X lou3 0.78 X 82 7.8 X 
statutemiles 0.73 x 10-1 0.76 X lo-' 11 0.99 x 10-3 0.74 x 10-3 77 7.3 x 10-3 

0.73 x 1 0.76 x 10-1 110 1.00 x 10-3 0.73 x 10-3 76 7.2 X 
0 10-1 0.76 X 10-l 5.3 1.00 X 10-3 0.73 X 150" 2.8 X 

322 km or 200 1.7 X 1 0 - 2  1 .2  x 1 0 - 2  7 0.83 x 10-5 2 .2  x 10-3 1500 2 . 2  x 10-1 
statute miles 1 .7  X lo-' 10-1 1 .2  x 10-2 70 0.98 X 10-5 1.9 X 1200 1.7 X 

1.7 x 10-8 1 1 .2  x 10-2 700 1.0 x 10-5 1.8 x 10-3 1200 1 .7  x 10-3 
0 10-1 1 .2  x 10-2 34 1 . 0  x 10-6 1 .8  x 10-3 2300" 7.8 x 

483 km or 300 1.4 X lo-' 1 0 - 2  3 .3  x 10-3 24 1.0 x 1.3  X lo-* 330 1 . 4  X 
statute miles 1 . 4  X 10-8 10-1 3.3 x 10-3 240 1.0 x 10-5 1 .3  x 10-4 330 1 . 4  X 

1.4  x 10-9 1 3.3 x 10-3 2400 1.0 x 10-5 1.3 x 10-4 330 1 .4  X 
0 10-1 3 . 3  x 10-3 120 1.0 x 10-5 1 .3  x 1 0 - 4  660" 5.5 X 

a For a given orbit the drag at  perigee determines the maximum value of f~ and hence the required value of fc. 

b & - is is chosen to make XQ - ZL = 10-9 om at perigee and is constant over any given orbit. 

Limit cycles are also shown for smaller values 
of fo which occur later in the orbit without giving the times or altitudes at which they occur. 

Whenfo is zero, the control acts at  both ends of the limit cycle and hence Tc is longer. 
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that XT - X B  cannot be made small enough. It is instructive 
to compute an upper-bound on this wasted gas. 

Let ~ D B  be the time in orbit after passing perigee a t  which 
the limit cycle begins to touch the left line, and assume that 
from time t D B  to time To - t D B ,  f~ is exactly zero. Then 

Tw Tcw is on during this period (30) 
TO - 2 t D B  total time that thrust 

of gas wasting 
where 
To = period of one orbit 

Tw 
Tcw = total time control is on during T w  

= period of one limit cycle while f~ = 0 

The weight of gas wasted per orbit is bounded by 

W,, (To - 2 t ~ ~ )  Tcw 
-- Fc orbit5 I,, Tw 

Equation (31) may be compared with the minimum possible 
gas used per orbit which is obtained from Fig. 4 using 

W,,dorbit  = Wgtotal(To/TL) (32) 
The ratio (W’,,,Jorbit)/(W,,i,/orbit) is given in Table 2 
for an eccentricity of e = 0.02. The amount of wasted gas 
decreases monotonically as XT - X B  decreases. 

In a practical satellite, the gas consumption rate must be 
multiplied by an additional factor that is never larger than 
3lI2 because the control force must be resolved along three 
mutually perpendicular axes. 

Finally, over the course of the lifetime of the satellite, some 
control gas will leak out, and this must be considered in the 
final lifetime calculation. 

Translation Control without Attitude Control 

If the vehicle has no attitude control, the control system 
is not as simple as that discussed in the previous section, but, 
on the other hand, it is not as complex as one might guess. 
This will be illustrated by considering a translation control 
system that uses linear time varying feedback. 

In this section only, it will be convenient to view the vector 
rc as a 3 X 1 column matrix denoted by rc whose elements 
are the components of rc resolved in a reference frame fixed 
in the satellite and to view rc’ as a 3 X 1 column matrix 
whose elements are the components of rc resolved in a non- 
rotating reference frame with its origin at the control center. 
rc or rc’  will simply mean the 3 X 1 column matrix whose 
elements are the time derivatives of the elements of rc or 
rc’ and will not imply from what frame vector differentiation 
is performed as was done with the dot and circle notation. 
Then rc and rc’ are related by the linear transformation 

re = Arc’ (33) 
A is the direction cosine matrix connecting the two frames. 
In this notation, Eq. (6) becomes 

Vc + 2 8 r C  + hrc  + P2rc = fD + fc (34) 
where 

0 - w z  
B ( wz  0 ”.) (35) 

-wy wz 0 
is an antisymmetric matrix of angular velocities which yields 
the components of ws X r when postmultiplied by r. By 
differentiating Eq. (33) and comparing the result with Eq. 
(43), it may be shown that A = - P A  and 

Arc’ = rc + BArc‘ = rc + a r c  (36) 

fc‘ = -Kvic  - KprC’ (37) 

If a control of the form 

Fig. 6 Saturated limit cycle (typical numerical values are 
shown in the last line of each block in Table 1). 

is selected for the nonrotating reference frame, KV and K p  
may be chosen to give any desired second-order performance: 

rcr = f D ’  - K, ic’ - Kprc‘ 

(38) re‘ + Kr7ic’ + KprC’ = fD’  

gives the controlled equations of motion in the nonrotating 
reference frame. In the rotating reference frame (fixed in 
the vehicle), 
fc = Aft' = -K,Aic’ - KpArc’ = 

.. 
or .. 

- K v ( ~ c  + Qrc) - KprC (39) 

or (in ordinary vector notation) 

fc = -Kv(‘c + OS X rc) - KPrc (40) 
Thus, in order to mechanize a linear translation control for 
arbitrary os, it is only necessary to measure o s  (for example 
with rate gyros) and to feed back Eq. (39) or (40). Then the 
controlled equation of motion written in a reference frame 
fixed in the satellite is 

kc + (Kv + 2Q) i c  + 
(az + b + KP + K , P ) r c  = f D  (41) 

or (in ordinary vector notation) 

Fc + (Kv + 2 ~ s  X )fc + 
[OS X (OS X ) + WS X + KP + Kvos X Irc = f u  (42) 

Viewed in the light of all of Eqs. (41) and (42), the results 
of the previous section are obvious since (42) results from the 
transformation of the vector form of Eq. (38) by the Cor- 
iolis law 

. = O + W S X  (43) 
The control may be obtained then by merely separating out 
the terms that are multiplied by KV or KP in Eq. (42). 

Thus, it is seen that, at least for the case of linear time 
varying feedback, complete absence of attitude control does 
not unduly complicate the mechanization of the drag-free 
satellite translation control. 

Table 2 Typical upper-bounds on wasted gas for e = 0.02 

hP,  
statute W,,/orbit, W,,i,/orbit, 
miles Ib lb W g w l  Wgmin 
100 0.15 0.23 0.65 

0.22 200 
300 2.2 x 10-4 7 . 6  x 10-4 0.29 

2.7 x 10-3 8.2 x 10-3 
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System Errors 

Typical Translation Error Sources and Magnitudes 

The terms FsB and F p B  act on the ball and perturb its 
orbit, and extraneous torques act on a spinning rotor and 
cause it to precess. Each of these sources of error must be 
examined. F S B  is due to 1) gravitational attraction of the 
vehicle on the proof mass; 2) electromagnetic forces due to 
stray fields in the satellite and due to stray and induced 
charge and magnetic moment on the proof mass; 3) forces due 
to sensing the position of the proof mass (these can arise from 
optical radiation pressure or electric attraction from a capaci- 
tive pickoff); and 4) gas in the satellite cavity. FPB can 
arise only from electromagnetic forces or possibly very 
energetic particle radiation, since the cavity physically isolates 
the proof mass from other outside disturbances. 

If the control system acts to center the ball a t  a position 
where FsB + F P B  # 0,  the arceleration error of the satellite 
will be 

fss + f P B  A f D B  (44) 
For ease of comparison, all translation error forces will be 
expressed in terms of their corresponding accelerations of the 
proof mass. The relative accelerations between the vehicle 
and the proof mass are unimportant except as they effect 
the mechanization of the control. 

The sources and relative magnitudes of the various errors 
are summarized in Table 3. Typical numbers are computed 
for a drag-free satellite that could be used for a combined 
geodesy and aeronomy mission. The satellite and proof 
mass are assumed to have the following typical parameters : 
nominal satellite size, 2d = 0.61 m = 2 ft ;  satellite mass, 
ms = 45.5 kg = 3.12 slugs; satellite weight, ws = 445 
newtons = 100 lb; cavity radius, dl = 3 em; proof-mass 
radius, RB = 2 em; proof-mass material, copper; proof- 
mass mass, mB = 0.30 kg; and proof-mass weight, W B  = 
2.9 newtons = 0.66 Ib. The derivations of the equations 

in Table 3 and the underlying assumptions are explained in 
Appendix B. 
Effect of  Acceleration Errors on the Trajectory 
of  a Drag-Free Satellite 

Satellite trajectory equations 

hlthough a t  first glance the trajectory equations of a drag- 
free satellite may appear to be quite complex, they are in 
fact rather simple. This is true because the control system 
constrains the salellite to follow the ball, and it is only 
necessary to consider Eq. (l), which describes the motion of 
the ball alone : 

(45) 
or 

?B = f G B  + f S B  f f P B  

If f S B  and f p B  were zero, the satellite motion would be that of 
a satellile acted on only by gravity, and the additional effect 
of f s s  and f p s  may be found by a perturbation analysis. The 
most convenient way to view the effects of f S B  and f p B  is 
to consider how much the actual trajectory deviates from the 
truly drag-free trajectory. Although it is not necessary, 
the analysis is greatly simplified if the actual motion is com- 
pared with a nominal circular orbit about a spherically sym- 
metric earth. These linearized satellite equations were first 
written by Hillz3 in connection with his lunar theory and 
were applied to artificial satellites by Wheelona4 and Geyling.25 
Their solutions are discussed in Refs. 24-28. 

(46) 

Linearized trajectory eyuutions 

Consider a locally level reference frame rotating about the 
{ axis with its origin in a nominal circular orbit about a fixed 
gravitating center. Choose the axis to be radially out 
from the attracting center, and the 7 axis parallel to the orbit 
velocity vector. Then the small amplitude linearized equa- 
tions of motion of a satellite with respect to this reference 
frame are 

Table 3 Error sources that disturb the orbit of the proof mass - 
Typical values, 

Source of f S B  or acceleration 
f P B  disturbance Relation Key magnitudes in ge's 

Vehicle gravity 

v B = l v  

yB = 2.2 x 1 0 - 1 9  c ~ ) ~ ~  10-13 Leakage electric field in the cavity s=-  3 t o V ~ E  
ge g e p r n R ~ '  

E = 0.1 v/m 

Image attraction of spherical cavity f -  - ~ E O V B '  (?A>" 
for charged ball with zero stray ge gePmRBd1' dl 
field 

(2) = 0.1 10-14 

Induced magnetic moment 
xn = 10-5 
mHS/pO = 1 amp-m2 10 -12 

d = 0.2 m 

Motion through the earth's 
magnetic fieldb 10 -13 

Electric force from capacitive 
pickup sensor 10 -*a 

w = 1 0 - 9 ~  1 0 - 1 8  
w Radiation force from optical sensor 

Se S e W 4  

Gas in the cavity Not directly comparable See discussion in . . .  
but negligible Appendix B 

a These terms appear t o  be of the  same order as the drag a t  very high altitudes; however, their effects are not of the same order since the drag always 
Also, the large error due to a capacitive pickoff can be eliminated by using acts parallel to the velocity vector. 

a n  optical pickup (see Appendix B). 
See the section on the effects of the eirors. 

0 This term is in fact zero inside a closed conducting cavity. 
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- 3W02t - 2WOi = fDBE 

2wOf + = fDBV (47) 
f + (-doz( = fDB< 

In deriving these equations, terms are neglected which are 
equivalent to dropping terms in e2 and higher, and, thus, 
they are quite accurate for orbits with e < 0.1 and are reason- 
ably good for values of e up to 0.3. In  addition, f and 7 
may be interpreted as either rectangular or polar coordinates 
(where 7 is “wrapped around” the nominal orbit). The 
rectangular coordinate interpretation is valid for and q 
small and for (and 4 arbitrary, and the polar coordinate inter- 
pretation is valid for ,$, f, and i small and 7 arbitrary.27 

Types of disturbing acceleration 

It is convenient to divide the disturbing accelerations into 
two classes: 1) nonrotating with respect to the E ,  7 frame 
and 2) nonrotating with respect to an inertial frame. When 
Eq. (47) is solved, the dominant secular terms for case 1 
are 

= f D B d / W O  (48) 

71 = -$fDB7t2 (49) 

[ = $(fDBt/WO) sinwot (50) 

(51) 

and for case 2 they are 

7 = 3(fDBt/WO)(1 + coswot) 

These equations represent the deviations along E and 7 caused 
by fDB. As a numerical example, if ~ D B  = lO-’lg, = lo-’” 
m/sec2, t = 1 yr = 3 X lo7 sec and wg = rad/sec; 
then fDBtZ = lo5 m = 300,000 ft = 60 miles and f D B t / q  = 3 m 
s 10 ft. **  The solution of the third of Eqs. (47) does not have 
any secular terms for constant fDBr, and it  is necessary to con- 
sider the next higher term, which is nonlinear. This equation 
is given by 

1 = -(3e/2)(fDB$/wO) CoswOt (53) 
which corresponds to a slow rotation of the orbit plane a t  a 
rate 3e/2woa.tt Using these results, it is possible to estimate 
the effect of the acceleration errors listed in Table 3 for vari- 
ous types of missions. These missions are most conveniently 
characterized in terms of their attitude control when com- 
paring the various disturbances. 

** The length of time for which the results of the liiiear per- 
turbation analysis may be safely extrapolated depends on the 
effects of the nonlinear terms that have been neglected. These 
neglected terms will, in general, give rise t o  terms in the solution 
containing powers of ewot, and they may be neglected if ewot << 1. 
For an exactly circular orbit, e remains less than for the case 
of Eqs. (50) and (51); and a 1-yr extrapolation appears reason- 
able. The results implied by the circular-orbit linear analysis 
are not valid for one year, however, if the initial conditions cor- 
respond to eccentricities of the order of 0.01. This does not 
imply that the results of this section are incorrect for eccentrici- 
ties of this order, but merely that they do not follow from the 
previous considerations. If the satellite equations are linearized 
about a nominal elliptical orbit (linear form of Encke’s method) 
and integrated numerically for 1 orbit period, the periodic part 
of the fundamental matrix may be factored from the part that 
grows with time, and the effect of the perturbations for one year 
may be computed. When this is done, it is now Ae that re- 
mains less than and the neglected terms are not significant. 
The results of this type of analysis are essentially the same as 
the circular-orbit calculations. 

tt This solution is, of course, also only the first term of a power 
series in t and is valid for only a limited time. When considering 
the case of a spinning satellite, it will be assumed that the satel- 
lite spin vector is occasionally realigned normal to  the orbit by 
the attitude control so that Eq. (54) is valid for all time. 
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Satellite attitude controlled to a locally level reference 
frame 

When the satellite attitude control system keeps the ve- 
hicle locally level, the disturbances do not rotate in the t, 1) 
frame, and the results of case 1 apply. Since a sizable com- 
ponent of the disturbance is almost certain to appear along 
7, this is clearly the worst case and can result in very large 
deviations. 

Satellite attitude controlled to an inertially nonrotating 
reference frame (gyroscope experiments) 

Here case 2 applies, and the departures from the nominal 
can probably be limited to only a few meters per year except 
when a capacitive pickup is used. In  that case, errors as 
large as several kilometers might develop in a year. If, how- 
ever, the mission is primarily to make gyrodrift measure- 
ments, the trajectory errors are not important. 

Satellite spinning with the spin normal to the orbit plane 
(geodesy and aeronomy missions) 

If the satellite spins with an angular velocity held nor- 
mal to the orbit plane that is large in comparison with WO, 

the effects of those forces, which are fixed in the satellite and 
which are not modulated a t  the spin rate, average to zero 
except along the spin axis. 

Examples of forces which do not average to zero are pro- 
vided by any force whose magnitude depends on the ball’s 
position relative to the satellite (since rsc will not be zero 
and the force will be modulated at the satellite spin rate) 
and by the force due to the motion of a charged ball through 
the earth’s magnetic field and the electric image attraction 
force (which are not fixed in the satellite). Nevertheless, with 
the exception of the capacitive pickup (which can be re- 
placed with an optical pickup) and the nonspinning forces 
(which are small), the effect of the dominant other disturb- 
ing acceleration due to vehicle gravity can be attenuated 
either by a factor of e [since Eq. (53) applies when the spin is 
normal to the orbitxt] or by a factor equal to the percent 
modulation of the gravitational force at spin frequency 
(whichever is larger) by spinning the satellite with the spin 
vector normal to the orbit plane. 

Under the foregoing circumstances, the departure of the 
satellite from an orbit, which would be caused by gravity 
alone, could possibly be limited to only 1 m/yr or so, and 
this would truly be a drag-free satellite. 

Gyroscope Random Drift 

The sources and magnitudes of the various torques that 
can cause random drift rates are summarized in Table 4. 
Typical numbers are computed for a spherical rotor with the 
following parameters : material, silicon; radius (RB) ,  2 em; 
mass (mg),  80 g; moment of inertia (C), 128 g-cm2 = 1.28 X 
lop5 kg-mg; spin rate (ma) ,  l o 3  rad/sec = lo4 rpm; angular 
momentum (hg), 1.28 X lo5 dyne-em-sec = 1.28 X lop2 
newtons-m-sec; and sphericity factors 

The derivation of the formulas in Table 4 and their under- 
lying assumptions are explained in Appendix C. el and €2 

are dimensionless parameters that are used to estimate the 
effects of the lack of sphericity of the rotor and are also dis- 
cussed in Appendix c. 

The results of the calculations summarized in Table 4 
indicate that it may be possible to build a gyroscope whose 
random drift rate is less than 0.1 see-arc/yr. This repre- 
sents an improvement of about five or six orders of magnitude 
over the best current instruments. The possibility of 
achieving such performance should admittedly be accepted 
with some skepticism; however, one of the very important 
uses of the drag-free satellite would be to test the results in 
Table 4. These tests would be important, not so much be- 

and ez, 

$ 3  It should be noted that the accuracy of this alignment need 
only be maintained to a factor of e. 
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cause one might ever want to build operational drag-free 
satellite inertial systems (although this might be the case), 
but because the effects listed in Table 4 will ultimately limit 
the performance of any gyroscope that could be built. In 
addition, even if a gyroscope in a satellite is supported in- 
stead of floating free, the drag accelerations are so small that 
performance can approach the numbers listed in Table 4, 
and it is clear that a whole new class of gyroscopes could be 
developed for satellite applications. The drag-free satellite 
can act as a research vehicle that will allow these results to 
be known years before it would otherwise be possible. 

Gyroscope Readout 

One of the most difficult questions, and one that is not dis- 
cussed in this paper, is the spin or angular momentum vector 
readout technique. Stanford University, Minneapolis- 
Honeywell, and the University of Illinois are all working on 
feasible readout schemes. It is felt by the author that any 
description of the details of the various systems should be 
given by these groups. It does appear, however, that read- 
out to this order of accuracy is quite possible and that it can 
be done without causing excessive drift rates. 

One complication that arises when one tries to read the 
direction of the angular momentum vector of an almost iso- 
inertial gyrorotor is that the preferred axis of rotation (Le., the 
axis of maximum moment of inertia) is difficult to identify in 

advance. This means that readout schemes that depend on 
body-fixed patterns are not quite as useful as they are on 
rotors where one axis of inertia is much larger than the other 
two. This is true because the angular velocity vector may 
move a considerable distance in the rotor body-fixed axis if 
the spin is not started parallel to the preferred axis. For 
an almost spherical rotor with principal moments of inertia 
A = C(1 - el), B = C(1 - e'), and C (where el and c2 are of 
the order of it can be shown that the angle + between the angular momentum vector and the angular 
velocity vector is given by 

I"' sin2a 

and 
sin2y 

2 
I)= €1- if el = E (54) 

a, 8, and y are the respective angles from the rotor xB, yB, 
and zB principle axes to the angular velocity vector. $ has 
a maximum value of the order of €1 or €2, and, when viewed 
from an inertial reference frame, the angular velocity vector 
rotates about the angular momentum vector a t  a rate that 
is practically equal to the angular velocity. and cz are 
of the order of lop5, it would appear that any readout that 
does not have a response time faster than will tend 

If 

Table 4 Unsupported gyrodrift rates (1 sec-arc/yr = 3.18 X deg/hr = 1.5 X rad/scc) 

Source of torque 

Gravity gradient 

Magnetic eddy currents 

Barnett effect 

Einstein-de Haas 

Spinning charge 

Tolman effect 
Induced magnetic moment in 

an ellipsoid 
Induced magnetic moment in 

single crystal 
Impurity ferromagnetism 

Electric moment induced in 
ellipsoid by nonuniform 
electric field 

Charge on the ellipsoid plus 
leakage field 

Charge on the ellipsoid plus 
image field 

Surface electric eddy currents 
in an ellipsoid (power 
dissipation) 

(magnetic moment) 

Sensor radiation pressure 

Surface electric eddy currents 

Key assumptions Typical drift rates 
Formula for dpeak and magnitudes (rad/sec) 

3 W 0 2  - _  
2 W E  

e = 10-5; = 103 rad/sec 5 x 10-14 

B = 2 X 10-5webers/m2 
u = 10mho/m 4 x 10-13~  

10 -15 

10-21 5XmH H only due t o  motion through 
PmRB2(e /m)gHWB earth's field 

7 x 10-16 

Neglected on the grounds that it is smaller than spinning charge 

Neglected on the grounds that experimenters could not have obtained accurate values of xaz if 
this were important. 

t i  = 10-lom 

. . .  

w = 10-9 w 

7 x 10-18 

10 -18 

3 x 10-21 

7 x 10-21 

5 x 10-18 

Gas in cavity 

2bkT 

7r 3kT 
9 mau 

(&" = - t 
hs2 T = 300°K (+2).y1'2 = 5 X 10-'3 rad in 1 yr 

6 = - R B ~ ~  (-) 
by a magnetic shield with an  attenuation factor of 0.1 which is easily attained. Q This number may be reduced to  4 X 

In  polycrystalline silicon this effect will be much smaller, and i t  may also be reduced by magnetic shielding. 



SEPTEMBER 1964 THE DRAG-FREE SATELLITE 1601 

to read the average direction of W E  which, of course, is the 
direction of the angular momentum. Thus it seems a t  the 
present time that sufficiently accurate readout schemes can 
be developed. Further details on this subject will have to 
await papers by the forementioned groups. 

Conclusion 

It has been shown that there appears to be no fundamental 
physical or engineering reason why a drag-free satellite can- 
not be built at this time. Such a vehicle would yield useful 
immediate results in geodesy and aeronomy and would lay 
the foundations for the construction of very good gyroscopes 
and possibly open the way to do the Pugh-Schiff relativity 
experiment. In addition, the actual mechanization of the 
translation control would not be overly complex. For 
simple vehicles, no attitude control is necessary since three 
rate gyros will give sufficient attitude information to imple- 
ment the control. The jet thrust levels and attainable fuel 
lifetimes are quite reasonable and should cause no difficulty. 

A spinning drag-free satellite with its spin vector normal 
to the orbit plane and with an optical position sensor would 
depart from a purely gravitational orbit by only 1 m/yr. 
Distances this small cannot be detected by any present or 
foreseeable tracking apparatus, and such performance would 
be drag-free in every practical sense. 

Appendix A : Translation Control Equations- 
Special Cases 

Three-Axis Attitude Control to an Inertial Reference 

If the drag-free satellite possessed perfect attitude control 
to an inertial reference, os and OS would be identically zero, 
and Eq. (6) would become 

(BPE - mE A; F P S  ) - m E F c s  ~ (Al) 
ms 

Equation (Al)  then reduces to three uncoupled equations of 
the form 

ik = -L [ AFoz + (1 + g) F S B ~  + 
mB 

where the drag is the dominant source of fD.  

I n  order for these equations to be valid, the attitude con- 
trol must act such that the neglected terms are much smaller 
than FC. To investigate the conditions under which this is 
true, assume for simplicity that linear constant coefficient 
feedback control systems act such that the translation and 
attitude responses are second-order and critically damped 
with time constants T,  and T,, respectively. Then it turns 
out that the foregoing requirement will be satisfied if T ,  2 T, 
and if an equivalent impulsive disturbance in attitude e,,, 
satisfies 

ern,, << (l /Tr) (A31 
The control associated with the plant represented by Eq. 

(A2) is discussed in the second section in order to illustrate 
the basic problems; but, in general, it is more convenient 
(and for geodetic missions more desirable) not to control 
attitude at all. 

Constant Spin about a Preferred Axis 

If the satellite is symmetric such that I l  = I 2  # 13, and if 
the satellite is stably oriented with respect to the orbit 

plane,29 and if the other disturbing torques are negligible, 
then os = os is constant and Eq. (6) is 

Fc + 2 0 s  x fc f Os x (Os x rc) = fD f fc (A4) 

In a reference frame with the z axis parallel to the spin axis, 
(A4) becomes 

Xc - W S 2 X C  - 2 W S y C  fDz + fCz + 2wSkC + 

(A7) 

Appendix B: j S B  andfpE Error Sources 

Errors Due to Vehicle Gravity 

In the vehicle there is a set of points which may be called 
the points of zero self-gravity or ZSG points. They have 
the following properties: 

1) The ZSG points are fixed in a rigid body, and they are 
not the same as the center of mass or the center of gravity. 

2) In a region of free space, a ZSG point is a saddle point 
or a neutral point of the potential energy. This follows by 
examining the proof of Earnshaw’s theorem (see Jean+). 

3) The ZSG is not a unique point but may be a finite num- 
ber of points, a countably infinite number of points, or an 
uncountably infinite number. This is evident from the fol- 
lowing simple examples: three point masses in a line, a dumb- 
bell with solid spheres on each end, a line mass ring, two co- 
axial line mass rings, a circular cylindrical shell, a hollow 
cylindrical body with wall of finite thickness, or a solid 
cylinder. 

4) A ZSG point is located a t  the center of mass of a body 
if pm(r) = p m  (-r). In the neighborhood of a ZSG point, 
the acceleration error from the vehicle gravity is 

~ E V G  = K(Gms/d2) ( T Z E / ~ )  (B1) 

(sa) 
d is a distance that is characteristic of the vehicle size, and 
K is a numerical factor that depends on the vehicle geometry. 
For example, in a hollow uniform spherical shell, K = 0; 
and, in a solid homogeneous sphere of radius d, the factor 
K = 1. To obtain a rough estimate of the value that K might 
reasonably be expected to assume, consider a homogeneous 
circular cylindrical body of inner radius dl ,  outer radius de, and 
height ahs. The second term in the series expansion of the 
potential a t  the center is given by 

where 
r Z B  = Irc - rczl 

4 2  -Kz(Gms/di) (TzB/di)2Pz (B3) 
where 
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and Pz is the second Legendre polynomial. If, for example, 
dl = 0.1 ft, dz = 1 ft, and hs = 1 ft,  then Kz = 1/344. If 
T ~ B  - dl, the term 42 adequately represents the potential, 
and 

f B I J G  = - (d&/dr) = -2Kz(Grns/dlz)(r~~/dl)PL 
f B v G  = -2Kz(Gm~/d1z) (rze/di) 1 035) 
f B V C m a x / g e  0.7 x 10-l' ( r Z B / d l )  

if gems = 100 lb. 
The control system can easily keep the average value of 

rc to 1 mm or less, but the error in centering the control center 
on a ZSG point could be of the order of 1 em. In  addition 
to this, the ZSG point will shift as gas is expelled unless the 
location of the gas tanks is symmetrical to this point. Thus, 
under these conditions, fnvG ,,x/ge would be of the order of 
10-ll. There are only two possible ways to find the location 
of the central ZSG point in the satellite. It can either be 
calculated from a knowledge of the mass position of each 
component in the satellite structure and equipment, or it  
might be measured with some device such as a torsion balance 
after the satellite is constructed. Both of these approaches 
present great difficulties, but they do not appear insurmount- 
able. If, for example, the effect of a 10-g mass located 10 cm 
from the central ZSG point were neglected in the computa- 
tion, this would cause an error of about 10-8 cm/sec2 of 
about lo-" ge. This is equivalent to a 4.2-mm error in 
locating the ZSG point. 

Errors Due to Electric and Magnetic Fields 

If the ball collects a small unknown residual charge, any 
stray electric field will apply an unknown force to it. In 
addition, if the ball is located in a shielded metal cavity, the 
charge on the ball would be attracted to induced charges on 
the cavity walls. A conducting ball inside a completely en- 
closed metal cavity could be discharged merely by contacting 
the walls. The charge on the ball would be exactly zero, 
and the static field inside the cavity would be exactly zero. 
This is true even for a shield of finite conductivity. It is 
not possible, however, to construct a completely enclosed 
cavity because the position of the ball must be sensed. 
Furthermore, for some applications, a nonconducting or 
even a transparent ball might be desirable; and, therefore, 
it is instructive to compute the minimum charge on the ball 
which could be measured and the minimum electric field 
in the cavity which could be detected. 

iMaximum charge that might reasonably be expected 
to accumulate on the proof mass 

The primary mechanisms for charging the proof mass will 
be due to the differences in the average velocities of electrons 
and ions from ionized air molecules and to the photoelectric 
effect from cavity illumination. At 400-km altitude, a large 
fraction of the air molecules are ionized, and the kinetic tem- 
perature is about 1000"K, but, on the inside of the satellite 
cavity, collisions with the walls should quickly discharge the 
ions and reduce their kinetic temperature to that of the satel- 
lite (about 300°K). Even if as many as half the gas mole- 
cules were ionized, the ball would probably not accumulate 
a negative charge much greater than 1 v. 

W. M. Fairbank of Stanford University has suggested to 
the author that, if the proof mass and the cavity walls are 
both coated with a photoelectric material and if the cavity 
is weakly illuminated with a radiation whose wave/length is 
chosen to give a stopping potential of about 0.1 v or less, 
then the potential on the proof mass will assume an equilib- 
rium value of 0.1 v or less. Thus it will be assumed that, 
by this or some similar technique, the charge on the proof 
mass can be limited to no more than 1 v, which corresponds 
to a charge of q B  = 47r.3, X 1 v X 0.02 m = 2.2 X coul = 
10+7 electrons. 

Maximum electric3eld that can leak into the cavity 

The question of what stray electric fields other than those 
due to a charge on the proof mass might be present in the 
cavity can be answered in the following way. If the proof 
mass were uncharged and if the cavity walls were a com- 
pletely closed conductor, there could be no static electric 
field present. As a practical matter, however, the cavity 
walls will need to have small holes in them to accommodate 
the position sensing apparatus, and any charge that has 
accumulated on the outside of the satellite will cause a resid- 
ual electric field to leak through these holes. Furthermore, 
the accumulated charge on the outside of the satellite may be 
fairly large, corresponding to a potential of several (or in a 
few cases several hundred) volts. 

If a closed conducting charged shell has an electric field 
E,  at some point on its surface, then there will be a field 
E,/2 a t  this same point if a small hole is drilled there. Gauss's 
law implies that the charge that is then inside the closed 
conductor is given by 

The electric field on the inside will depend on how the inner 
charge is distributed, but generally it will be concentrated 
near the hole. If additional shields are used, each one will 
attenuate the charge according to Eq. (B6). For the purpose 
of a simple computation, it will be assumed that the static 
electric field can be limited to less than 0.1 v/m inside of 
the cavity containing the proof mass by a series of concentric 
shielded cavities or, equivalently, by bringing in leads or 
light beams through tubes whose lengths are big compared 
to their diameters. 

Force on a charged ball due to leakage electric$eld 

celeration on a 300-g ball with a charge of 2.2 X 
which is given by 

A stray electric field of 0.1 v/m would cause an error ac- 
coul 

Force on a charged ball due to image attraction 
with zero 1eakageJield 

charge inside the cavity is given by 
For a spherical cavity of radius dl ,  the force on a point 

where rQ is the distance of the point charge from the equilib- 
rium point a t  the center. The acceleration that corresponds 
to this for a 3-em radius cavity and a potential of 1 v and a 
position error of 0.3 cm is 

Magnetic force due toJield gradients 

The force on the ball due to stray magnetic fields is 

F = ( m H B . v ) H  (BI 0) 
If the ball is constructed of nonferromagnetic materials, there 
will be no residual magnetic moment, and the only source 
of mxs is a moment induced by the stray magnetic field. 

Stray magnetic fields can arise from two sources, those in 
the satellite and those external to the satellite. The external 
field primarily will be due to the earth's magnetism and is of 
the order of 2 X webers/m2. Magnetic fields in the 
satellite arise from current loops, ferromagnetism, and un- 
explained residual magnetic moments. Bandeen and Man- 
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ger31 report apparent residual values of mHs/po of 1 amp-m2 
in Tyros I, and this is considerably larger than the magnetic 
moment expected from the electrical circuitry and is prob- 
ably the largest value one might expect. The magnetic field 
in the satellite which corresponds to a magnetic moment 
of this size is of the order of the earth’s field. However, 
its gradient is much larger than the gradient of the earth’s 
field, and, hence, it can exert a much larger force on the ball. 
The maximum acceleration of the ball due to a residual mag- 
netic moment rnBs/p,, of 1 amp-m2 located in the satellite a 
distance d = 0.2 m from the ball as computed from (B10) is 

Force due to the motion of a charged ball through the 
earth’s jield 

Since the charge on the ball is in motion through the 
earth’s magnetic field, this field exerts a force on the ball given 
by 

FPB = p vo X Be ( B W  

coul, this For a 300-g ball with a stray charge of 2.2 X 
corresponds to an acceleration 

The magnitude of this effect is computed for illustrative pur- 
poses only, since it is actually zero inside of a closed con- 
ducting cavity. 

Errors Due to Sensing the Position of the Proof Mass 

Capacitive pickup position sensor 

If a capacitive pickup is used, it will exert an electric pres- 
sure on the ball given by eoEn2/2. The electric field is pro- 
portional to the input voltage to the position circuitry, and 
the input voltage required depends on the precision with 
which the position of the ball must be resolved. Since the 
velocity of the ball with respect to the satellite can be in- 
ferred only from the position measurements, the minimum 
tolerable velocity error determines the necessary precision 
of the position measurements. Typical values for the mini- 
mum velocity error may be obtained from Table 1. The 
worst case in the table occurs at  300 miles where a velocity 
measurement to the order of cm/sec is necessary to 
mechanize the control. It is assumed that the position 
measurement errors can be represented by white noise that 
is averaged by a single time constant filter with time constant 
TI = 2?r/wl. It is further assumed that the velocity is 
formed by a filter of the form 

so t.hat the velocity error is given in terms of the position error 
by 

if w1 = w2. Alternately, 

Thus, to limit the velocity error to cm/sec, the position 
must be measured to 2.25 X lo+ cm if T1 = 100 msec. If 
it is assumed that with a 100-v input to the capacitive cir- 
cuitry the pickup can resolve times the nominal gap 
width, then it is possible to compute the force from the electric 
pressure. A typical capacitive pickup would use a set of in- 
put plates to couple the input voltage to the ball and three 

pairs of output plates to read position in each axis. The 
computation of the force on the ball is rather involved, but, 
if the departure from equilibrium is small, i t  may be approxi- 
mated by 

(Kl’i) 

where d, is the nominal gap width and Ac is the area of the 
plates. If Ac = 1 cm2, d, = 0.2 cm, and Ad,/2d, = 0.1, 
then 

f/ge = 3.76 X Vc2(Vc in volts rms) (B18) 

If it is further assumed that the measurement noise is additive 
with zero mean and uncorrelated with position, then V c  and 
u; are related by an expression of the form 

Vc = K ~ / u ;  (B19) 

From Eq. (B16) and the previous assumption of the pickup 
sensitivity, Kc = 0.1 v-cm/sec. Thus 

For a given altitude, the value of u; which can be tolerated 
may be inferred from Table 1 and is of the order of 10-2 
cm/sec for hp = 100 miles and lop3 cm/sec for hp = 200 
or 300 miles. It follows that 

fsa/ge = 4 X 1O-lo for hp = 100 miles 

fsB/& = 4 X 10-* for hp = 200 or 300 miles 
(1322) 

For a 300-mile orbit, a capacitive pickup will provide about 
as much disturbance as the drag on the vehicle; and, for 
missions in this altitude range or for any mission where the 
capacitive pickup causes disturbances that are too large, 
it  will be necessary to use an optical pickup. On the other 
hand, for aeronomy or geodetic missions where hp is less than 
200 miles, a capacitive pickup may be quite satisfactory. 

Optical position sensor 

One arrangement that could sense the position of the ball 
would use a single light source and a single photomultiplier 
tube. The light from the source is chopped by a vibrating 
reed or a linear electro-optical device, and then with the 
aid of fixed mirrors it is split into six rectangular beams, two 
for each axis. The chopper acts such that only one beam 
at  a time is on, so that the output signal is time shared among 
the beams. To measure displacement on a given axis, the 
beams are aimed such that, when the ball is in its centered 
position, it intercepts about half of each beam and such 
that displacement along that axis covers one beam and un- 
covers the other. The signals from beams on opposite sides 
of the ball are subtracted, and this difference signal is pro- 
portional to the deviation of the ball from its centered position. 

It is necessary to use a single light source and a single 
photomultiplier to  reduce the effects of drift, and it is neces- 
sary to chop the light source in order to distinguish the beams 
(by time sharing), avoid the drift problems inherent in d.c. 
amplifiers, and to prevent the encoding of low-frequency 
noise on the signal. 

The minimum change in position which can be detected 
depends on the photomultiplier noise properties. E n g s t r ~ m ~ ~  
quotes minimum detectable powers of w with a band- 
width of 1.8 cps for photomultiplier tubes. For a band- 
width of 10 cps this corresponds to approximately 5 X 
w. The position error ux is given by 

uX = Nda/2W W 3 )  
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where da is the width of the beam, W the power in the beam, 
and N the noise equivalent power of the phototube. For ex- 
ample, if N = 5 X lO-'4 w, & = 4 mm, and W = 

a, = 10-5cm (B24) 

w, 

The disturbing force (which is due l o  radiative pressure) is 
given by 

F = W/C 

f/ge = (W/g,mBc) ZZ 10-l' 

Thus, for those applications where the capacitive pickup 
would disturb the ball excessively, the use of an optical pick- 
up can reduce the disturbance by nine or ten orders of magni- 
tude. 

Brownian Motion of the Proof Mass 

The effect of gas in the cavity can be divided into two parts, 
a macroscopic resistive force proportional to the velocity and 
a microscopic force noise with zero mean that is due to 
individual molecular collisions. This division of effect is to 
some extent arbitrary, but it  has proved quite successful 
in the classical theory of Brownian motion of colloidal par- 
ticles. This gives the equation of motion 

Xc + (p/mn)*c = . f ~ g = s  (B26) 

If the molecular force noise is considered to be white and 
if it is assumed that equipartition of energy eventually ob- 
tains, then Eq. (B26) may be integrated by the technique 
described in A ~ e l t i n e ~ ~  and Kennard.34 For zero initial 
conditions at  t = 0, 

(*c2)By = ( k T / m B ) ( l  - e -2 f i t /mB)  (B27) 

p depends on the surface properties of the sphere and may 
be evaluated from kinetic theory. For an order of magni- 
tude estimate, it will be taken as 

for p = 6.5 X 10-15g/cm3 and T = 300°K. The time 
constant m B / p  is about 1700 yr, so that 

z ( 2 p k T / m B 2 ) t  (B30) 

(zc2).. = (2pkT/3mB2)t3 = (1.4 X 10-31m2/sec3)t3 (B31) 

After one year, the rms value of xc would only be 

( ~ c . ~ ) ~ ~ ~ / ~  = 61 p (B32) 
so that the effect of gas in the cavity is completely negligible. 

Appendix C : Calculation or Estimation 
of Gyroscope Random Drifts 

The equations of the gyrorotor in its principal axis system 
are given by 

(1 - EI)&E, + E Z W B ~ W B ~  = M n J C  

(1 - E Z ) & B ~  - E ~ W E ~ W B ~  = M n y / C  (CI) 

W B z  + (El - 6 2 ) m B z m B y  = MB,/C 
where the principal moments of inertia are A = C(1 - el), 
B = C(1 - E Z ) ,  and C. el and €2 are called the ellipticities 
and are of the order of If the terms involving el and e2 

may be neglected, the equations of motion become, with 
O B  = e o w g ,  

where M , ,  and M, are the components of the disturbing 
torque parallel to and perpendicular to wB, respectively. The 
magnitude of the drift rate is computed from Eq. (C3). 

The principal model that will be used for most of the torque 
calculations is an almost spherical rotor of ellipsoidal shape. 
The eccentricities el and e2 are defined by 

and the eccentricities and the ellipticities are related by 

el = 2c1 e2 = 2c2 (C5) 

b = ~ ( l  + €2) (C6) 

(C7) a > b > c  

A < B < C  (C8) 

so that 

a = c ( l  + €1) 

It will be assumed for definiteness that 

In some of the calculations (such as gravity gradient) and 
in the presentation of the results (as in Table 4), it is con- 
venient to ignore the difference between 

In each example below, the maximum value of the drift 
rate will be computed. In many cases, as for example with 
the gravity gradient torque, the actual drift will be less since 
part of the total effect of the torque will have zero time 
average. 

and c2. 

Gravity Gradient Torque 

If it is assumed that the spinning rotor may be repre- 
sented by an oblate spheroid with moments of inertia A = 

B = C(1 - E )  and C, the peak drift rate is given by Cannon" 
as 

$peak = $ ( W 0 2 / W B ) €  (C9) 
wo is the satellite orbit angular velocity and a n  is the rotor 
spin angular velocity. 

If the bulge is assumed to be due to a permanent bulge 
plus one caused by the rotation, then 

E EP + 6 R  (C10) 

E R  = ~ ~ ( p n W n 2 R B 2 / ~ )  (C11) 

I t  is shown in Klein and S ~ m m e r f e l d ~ ~  that 

where E is Young's modulus for the material. Thus 

(cia 
45 WO'~,RB~WB 3 wO' 

+peak - ~~ + 2 w, tP 76 E 

If 

rad 
sec (C13) 1.7 x 103 - 

for silicon, then $peak has a minimum value of 

Electromagnetic Torques 

The description of magnetic eddy currents in sphere is a 
classical problem and is discussed in Refs. 36-39. The eddy 
current torque tends to slow down the rotation of the gyro- 
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rotor, and it tends to precess the spin axis. 
rotor in the earth’s field, the time constant is given by 

For a silicon 

4 ~ m  
B.L 

time const = = 74,000 yr 

The peak precession rate is given by 

= B11B,u/4p, = 4.3 X rad/sec (C16) 

B,, and B1 are the components of B parallel to and per- 
pendicular to OB, respectively. This rate is 10 times too big 
to do the Pugh-Schiff experiment, but, since it falls off as 
the square of the field attenuation, a very simple magnetic 
shield would reduce it to an acceptable value. 

The Barnett effect, Einstein-de Haas effect, and the Tolman 
effect are discussed by H a r n ~ e l l , ~ ~  and the spinning charge 
calculation is straightforward. The effect of elliptic geometry 
is covered in S t r a t t ~ n , ~ ~  and the magnetization integrals are 
easily evaluated by expanding in powers of e. The results 
in Stratton for a sphere in a uniform field are easily extended 
to the case of crystalline magnetic anisotropy and give a 
drift rate of 

(C17) 

Ho and Bo are taken as constant external fields, and the single 
and double primes represent their components along mu- 
tually perpendicular body principal axes. xm’ and xn’’ are 
the eigenvalues of the xnc tensor for the prime and double 
prime axes, respectively. 

The drift rate produced by induced electric moments and 
by charge on an ellipsoid may be bounded by the following 
procedure. The torque on an uncharged ellipsoid in a non- 
uniform external electric field is given by 

since the electric field is normal to the surface. For ex- 
ample, the y component of M is 

Since the ellipsoid is almost spherical, the radical may be re- 
placed by l /c.  Then only errors of the order of el and e2 are 
introduced. Hence 

Since the maximum value of Z B Z B  differs from c2 /2  only by 
terms of order el and e2, 

Gpesk due to M ,  is given by 
IM’I < 7 r ~ O E ~ ~ ~ c ~ e l  (C22) 

with similar relations for the other axes. By a similar tech- 
nique, it is possible to obtain bounds on the drift rates due to 
charge on an ellipsoid, sensor radiation pressure, and gas in 
the cavity. 

The surface electric eddy currents are due to the fact that 
the charge distribution of a charged ellipsoid in an electric 
field must vary as the orientation of the ellipsoid varies. The 
results quoted in Table 4 are estimates based on the approxi- 
mation that a fraction, el or e2, or the total charge circulates 
around the ellipsoid a t  a frequency we/%. 

Gas Torques 

The gas in the cavity tends to slow down the rotation and 
to precess the spin axis. The resistance is approximately pro- 
portional to ws and may be computed from kinetic theory. 
For the purpose of an order of magnitude estimate, b will be 
taken as 

b = (7r/9)RB4p(3kT/m,,)1’2 = 1.8 x joule-sec (C24) 

The spin-down time constant due to b can be computed 
from the equation 

CWB + bwe = M I I  ((325) 
and the result is 

spin-down time const = C/b  = 2200 yr 

same procedure as that outlined in Appendix B. 
drift angle of the spin axis is given by 

(C26) 
The random walk of the spin axis may be evaluated by the 

The rms 

= (2bkT/hs2) t  ((37) 

( c # I ~ ) ~ ~ ~ / ~  = 5.4 X rad (C28) 

Equation (C27) predicts a drift of 

in one year which is entirely negligible. 

References 

1 Gerathewohl, S. J., “Zero-G devices and weightlessness 
simulators,” National Academy of Sciences-National Research 
Council, Publication 781 (1961). 

Ericke, K. A., “The satelloid,” Astronaut. Acta 2 ,  Fasc. 

Dicke, R. H., “The nature of gravitation,” Science in Space, 
edited by L. V. Beoknev and H. Odishaw (McGraw-Hill Book 
Co., Inc., New York, 196l), Part 2, pp. 91-118. 

4 Pugh, G. E., ‘(Proposal for a satellite test of the Coriolis 
prediction of general relativity,” Weapons Systems Evaluation 
Group Res. Memo. 11, The Pentagon, Washington, D. C. 
(November 12, 1959). 

5 MacDonald, G. J. F. and Cohlan, B. F., “Sustaining orbit- 
ing geophysical observatory,” unpublished proposal, Institute 
of Geophysics and Planetary Physics, Univ. of California at Los 
Angeles (December 1962). 

8 Proceedings of the Conference on Experimental Tests of the 
Theories of Relativity, unpublished, Stanford Univ. (July 1961), 

7 Kaula, W. M., “Celestial geodesy,” NASA TN D-1155 
(March 1962). 

8 Jacchia, L. G., “Variations in the earth’s upper atmosphere 
as revealed by satellite drag,” Rev. Mod. Phys. 35, 973-991 
(1963). 

9 Sharp, G. W., Hanson, W. B., and McKibbin, D. D., 
“Atmospheric density measurements with a satellite borne micro- 
film gauge,” J. Geophys. Res. 67, 375-382 (1962). 

10 Schiff, L. I., “Motion of a gyroscope according to  Einstein’s 
theory of gravitation,” Proc. Natl. Acad. Sci. U. S. 20, 1288- 

11 Cannon, R. H., Jr., “Requirement, and design for a special 
gyro for measuring general relativity effects from an astronomical 
satellite,” Kreiselprobleme, edited by H. Ziegler ( Springer-Verlag, 

2,63-100 (1956). 

pp. 61-65. 

1302, 1405-1421, 1517-1532 (1959). 

- . -  - -. 
Berlin, 1963), pp. 146-160.’ 

12 Dicke. R. H.. Hoffmann. W. F.. and Krotkov. R.. “Tracking , ,  - 
and orbit requirements for experiment to detect variations in 
gravitational constant,” Space Research II-Proceedings of the 
Second International Space Science Symposium (Interscience 
Publishers, Inc., New York, 1961), pp. 287-291. 

1 3  Rider, L., “Impulsive orbit sustaining techniques for low 
altitude satellites,” Aerospace Corp. TR T.N. 594-1105-2 
(December 5,1960). 

l4 Bruce, R. W., “Satellite orbit sustaining techniques,” ARS 

15 Roberson, R. E., “An intermittent orbit sustaining tech- 
nique,” Astronaut. Acta 8 ,  Fasc. 1, 42-48 (1962). 

16 Smelt, R., “Upper atmosphere properties derived from 
Discoverer satellites,” TR SUDAER 111, Dept. of Aeronautics 
and Astronantice, Stanford Univ. (1961). 

J. 31,1237-1241 (1961). 



1606 B. LANGE AIAA JOURNAL 

l7 Sissenwine, N., “Announcing the U. S. standard atmos- 
phere-1962,’’ Astronautics 7,52-53 (August 1962). 

l8 Flugge-Lotz, I., Discontinuous Automatic Control (Princeton 
University Press, Princeton, N. J., 1953), Chap. 4. 

Graham, D. and McRuer, D., Analysis of Nonlinear Control 
Systems (John Wiley and Sons, Inc., New York, 1961), pp. 370-393. 

za Flugge-Lotz, I., “Discontinuous automatic control,” Appl. 
Mech. Rev. 14,581-584 (1961). 

21 Gaylord, R. S. and Keller, W. N., “Attitude control system 
using logically controlled pulses,” ARS Progress in Astronautics 
and Rocketry: Guidance and Control, edited by R. E. Roberson 
and J. S. Farrior (Academic Press, New York, 1962), Vol. 8, pp. 
629-648. 

22 Dahl, P. R., Aldrich, G. T., and Herman, L. K., “Limit cycles 
in reaction jet attitude control systems subject to external 
torques,” ARS Progress in Astronautics and Rocketry: Control 
and Guidance, edited by R. E. Roberson and J. S. Farrior (Acade- 
mic Press, New York, 1962), Vol. 8, pp. 599-628. 

23Smart, W. M., Celestial Mechanics (Longmans Green and 
Co., Inc., London, 1953), pp. 291 f. 

24 Wheelon, A. D., “An introduction to mid-course and 
terminal guidance,” Space Technology Labs. Rept. G.M.-T.M.- 
0165-00252 (June 10,1958). 

25 Geyling, F. T., “Satellite perturbations from extra-terrestrial 
gravitation and radiation pressure,” J. Franklin Inst., 375407 
(May 1960). 

26 Eggleston, J. M. a id  Beck, H. D., “A study of the positions 
and velocities of a space station and a ferry vehicle during 
rendezvous and return,” NASA TR R-87 (1961). 

27 Tempelman, W. H., “Circular orbit partial derivatives,” 

Aseltine, J. A., Transform Method in Linear System Analysis 
AIAA J. 1,1187-1189 (1963). 

(McGraw-Hill Rook Co., Inc., New York, 1958), pp. 73-75. 

29 Kane, T. R., Marsh, E. L., and Wilson, W. G., Letter to the 
J. Astronaut. Sci. 9, 108-109 (Winter 1962). 

3o Jeans, J., The Mathematical Theory of Electricity and Mag- 
netism (The University Press, Cambridge, England, 1960), pp. 

31 Bandeen, W. R. and Manger, W. P., “Angular motion of 
the spin axis of Tiros I meterological satellite due to magnetic 
and gravitational torques,” J. Geophys. Rev. 65, 2992-2995 
(1960). 

32 Engstrom, R. W., “Multiplier photo-tube characteristics: 
application to low light levels,” J. Opt. SOC. Am. 37, 420 (1947). 

33 Aseltine, J. A., Ref. 28, pp. 240-241. 
34 Kennard, E. H., Kinetic Theory of Gases (McGraw-Hill 

Book Co., Inc., New York, 1938), pp. 280-283. 
35 Klein, F. and Sommerfeld, A., Theorie des Kreisek;, Heft I I I )  

Die Storenden Einfiusse. Astronomische und Geophysikalkche 
Anwendungen (Leipzig, Druck und Verlag, von G. B. Teubner, 
1903), pp. 692-696. 

36 Smythe, W. R., Static and Dynamic Electricity (McGraw- 
Hill Book Co., Inc., New York, 1950), p. 398. 

37 Houston, W. V. and Muench, N., “Electromagnetic forces 
on a superconductor,” Phys. Rev. 79, 967-970 (1950). 

38 Alers, P. B., McWhirter, J.  W., and Squire, C. F., “Eddy 
currents and supercurrents in rotating metal spheres a t  liquid 
helium temperatures,” Phys. Rev. 84, 104-107 (1951). 

39 Tabakin, F., “Torque on a spinning metallic sphere induced 
by a time dependent magnetic field,” TR BSD-61-25, Space 
Technology Labs., Inc., Los Angeles, Calif. (September 1961). 

4o Harnwell, G. P., Principles of Electricity and Electromag- 
netism (McGraw-Hill Book Co., Inc., New York, 1949), pp. 377- 
381. 

4 1  Stratton, J. A., Electromagnetic Theory (McGraw-Hill Book 
Co., Inc., New York, 1941), pp. 201-217. 

167-1 68. 


