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The Experimental Basis of Einstein's Theory.-Einstein's theory of gravitation,
the general theory of relativity, has been accepted as the most satisfactory descrip-
tion of gravitational phenomena for more than forty years. It is a theory of great
conceptual and structural elegance, and it is designed so that it automatically
agrees in the appropriate limits with Galileo's observation of the equality of gravi-
tational and inertial mass, with Newton's mechanics of gravitating bodies, and
with Einstein's special theory of relativity. Leaving aside the very important
matter of elegance, we wish in this section to examine the experimental basis of
the theory. This basis consists of the three points of limiting agreement with
earlier results just mentioned, together with certain astronomical evidence.
The equality of gravitational and inertial mass was originally formulated in

terms of equal accelerations for all freely falling test particles, regardless of mass
or chemical composition. In this form, it is a consequence of general relativity
theory insofar as test particles move in accordance with the geodesic equations for
a Riemannian metric. However, the experimental evidence on freely falling par-
ticles is not of very great accuracy. Much more precise experiments were per-
formed about half a century ago by E6tv6s and collaborators,' and are now being
repeated with improved technique by Dicke.2 Since they make use of particles
that are not in free fall but are subjected to nongravitational constraints, the rela-
tion with Einstein's theory is not quite so simple as just indicated. On the other
hand, we can regard these experiments as establishing with great confidence the
principle of equivalence, which we express in the following way: all observations
made locally on a system in a static, uniform gravitational field in the absence of
local background matter agree with corresponding observations made on the same
system when it is subjected to an equivalent acceleration in the absence of the field.

This statement of the equivalence principle goes beyond the direct evidence of
the Eotv6s experiments. For -one thing, the E6tv6s experiments do not compare
observations made in the presence and absence of a gravitational field, but rather
compare observations made with an acceleration in one direction and a gravita-
tional field in another. More important, the observations made are not perfectly
general, but consist of mass comparisons. However, there is a great deal of physi-
cal content to a precise mass measurement, since many of the phenomena known in
physics enter into it with sufficient effect to be noticeable;3-5 this occurs through
the Hamiltonian of the system, of which the mass is essentially the ground-state
eigenvalue. It would be remarkable if the equivalence principle were to apply to
the ground states of the Hamiltonians of physics, and not also to the excited states
that determine, for example, the transition frequencies. Thus, while this formula-
tion of the equivalence principle is an extrapolation from the direct evidence of the
E6tv6s experiments, it is not so great an extrapolation as might at first be supposed.
The other points of contact with Einstein's theory of gravitation are most readily
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discussed in terms of the formalism of the theory. In the simplest interesting case,
that of the gravitational field about a stationary, spherically symmetric mass m,
the metric that represents the solution of the field equations can be written in the
Schwarzschild standard form6

ds2 = (1 - 2m/r)dt2 - dr2/(1 - 2m/r) - r2(d02 + sin2 a dc2), (1)

where units have been chosen so that the speed of light and the Newtonian gravi-
tational constant are equal to one. Then special relativity is valid whenever
m/r may be neglected in comparison with unity. The metric (1) may be supple-
mented by the geodesic equation of motion for a test particle, and the null-geodesic
equation of motion for a light ray; alternatively, these equations of motion can be
obtained from the field equations themselves.

Suppose now that we wish to verify the structure of equation (1) by comparison
with observation. We may then write the metric in the form

ds2 = (1 + am/r + fm2/r2 + . . . )dt2-
(1 + ym/r + 8m2/r2 + . )dr2 - r2(d02 + sin2 6 d42) (2)

where a, ,3, y, 6, ... are of order unity. This implies an expansion in powers of the
quantity m/r, which is very small in all cases of observational interest. It also im-
plies spherical symmetry, in which case do and do appear in the combination shown
and any multiplying series in powers of m/r is readily transformed away by a change
of the radial variable. It then follows that the limiting case of Newtonian me-
chanics requires only that a = -2. The gravitational red shift is also accounted
for in the same way. The theory of the gravitational deflection of light passing
close to the sun results from the null-geodesic equation for a light ray, together
with the above value for a and the choice oy = +2. Finally, the theory of the
precession of the perihelion of the orbit of the planet Mercury results from the
geodesic equation of motion for a test particle, the foregoing values for a and 'y,
and the choice fi = 0. Higher terms in the series of (2) have not been subjected to
experimental test.'
We now ask to what extent the above numerical values of a, A, and oy, and the

equations of motion, may be inferred without recourse to Einstein's theory of
gravitation. It is argued elsewhere8 that the values of a and -y, and the null-
geodesic equation for a light ray, can be obtained- correctly from the equivalence
principle as formulated above, together with the special theory of relativity. On
the other hand, the value of fi, which depends in an essential way on the nonlinearity
of the field equations, and the geodesic equation for a test particle, cannot be ob-
tained in this way. Thus, the planetary orbit precession remains as the sole ex-
perimental basis for Einstein's theory. Recent terrestrial experiments on the gravi-
tational red shift9' 10 should be thought of as providing additional evidence for the
equivalence principle as formulated above, rather than for the general theory of
relativity.

There are at least three general ways in which one might look for new experi-
mental verifications of Einstein's theory of gravitation to supplement the plane-
tary orbit precession. The first is related to cosmological implications, such as
variations of certain natural constants with time,2 and the structure and evolution
of the universe.11 As an example of the latter, a search could be made for a mini-
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mum apparent size of extra-galactic nebulae, since the most distant visible nebu-
lae might be expected to appear larger and redder than those at intermediate dis-
tances. The second approach consists in searching for gravitational radiation,
either arising from extra-terrestrial sources, or possibly generated in the laboratory. 12
The third proposal is specifically designed to involve terms in the metric (2) beyond
a and ry, and the equation of motion of matter of finite rest mass beyond the New-
tonian approximation. This could be accomplished by measuring the precession
of the spin axis of a torque-free gyroscope in the gravitational field of the rotating
earth;"3, 14 although the fl, 3, . . . terms in (2) are not involved, new off-diagonal
space-time components of the metric tensor that arise from earth rotation become
significant. The present paper is devoted mainly to a derivation and discussion of
the results already published in a brief notice. 14

Equations of Motion of a Spinning Test Particle.-Papapetrou'5 has derived
covariant equations of motion for the center of mass and the spin angular momen-
tum of a spinning test particle (torque-free gyroscope). These equations are in-
complete in two respects. (1) They refer to free fall, that is, to motion in a pure
gravitational field. Thus, while they describe a gyroscopic satellite, they do not
describe a gyroscope in an earth-bound laboratory. Our first task, then, will be
to generalize these equations by including a non-gravitational constraining force
F. (2) There are only three independent equations for the six components of the
angular momentum tensor, so that supplementary conditions must be imposed.
These conditions may be chosen in either of two natural ways. Corinaldesi and
Papapetrou'6 require the timelike components of the angular momentum tensor to
vanish in the coordinate system in which the central attracting body is at rest.
Piranil7 requires these components to vanish in the rest-frame of the gyroscope.
We shall consider both of these possibilities here.

Papapetrou uses the method of Fockl' to obtain the equations of motion. This
consists in starting with the "dynamical equation" for the energy-momentum tensor,
according to which its covariant divergence is zero:

Tp;v = 0. (3)
T` represents the test particle, and is supposed to vanish outside of a narrow tube
in four-dimensional space-time that surrounds the world line of some representa-
tive point X" of the particle. The space components of Xy, Xi (i = 1, 2, 3), are
regarded as functions of the time X4 = t, or of the proper time s along the world
line. This world line need not be a geodesic of the gravitational field, which is
described by the metric tensor ge,. The equations of motion are obtained by manip-
ulating integrals of the form

fJ T"' dv, f (xa - Xa) T"'dv, ... (4)

where the integrations extend over three-dimensional space for t = constant. A
point test particle is one for which some of the components of the first integral of
(4) fail to vanish, but the other integrals are always zero. A spinning test particle
is one for which some of the components of both integrals fail to vanish, but an
integral containing more than one factor (xa- X) is always zero.
The four-velocity of the representative point of the particle is u" = dX"/ds.

We generalize the nongravitational constraining force F to a four-force F' such
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that Fi = F and FTu,, = 0,19 and assume that it is applied at the point XI. Equa-
tion (3) is still valid, but T"P must now be thought of as consisting of two parts, one
representing the test particle and the other the force. We avoid a detailed specifi-
cation of the second part by assuming that its covariant divergence is zero except
at the point of application, and is there proportional to Fa. Then if we denote
just the first part by TIS, equation (3) is to be replaced by

TAP;V = (F"/U4)6(X1 - X')b(X2 - X2)5(X3 - XI), (5)
where the right side is a product of Dirac a functions. That equation (5) is actually
covariant is most readily shown by using it to calculate the equation of motion of a
point test particle after the manner of Papapetrou. The result is

mo(du'p/ds + rftguauf) = FTM, (6)

which reduces to the geodesic equation when FM = 0. The rest mass of the particle,

m0O (l/U4)f T44 dv, (7)
is a scalar,'5 and can be shown to be constant along the world line.
We may also apply Papapetrou's procedure to a spinning test particle, using,

however, equation (5) in place of (3). The spin angular momentum is defined by

SacI= f (xA - XTM)T 4 dv - f(x' - X')TT4 dv, (8)
which can be shown explicitly to have the transformation properties of a tensor.'5
The equation of motion of the spin is unaffected by inclusion of FT, and may be
written in the covariant form'5

(DS;I,/Ds) + uTuca(DS'a/Ds) - U'ac(DSTa/Ds) = 0, (9)

where D/Ds represents covariant differentiation along the world line:

(DSTM/Ds) = (dST /ds) + rPtac9s,,up + rFa,9S"u. (10)

The equation of motion of the representative point of the particle is modified from
equations (6) and (7) by terms of order S"'. However, this effect of the
spin on the orbital motion of the particle is completely negligible in situations of
current experimental interest.

It is sometimes convenient to rewrite equation (9) in the noncovariant form

(DSTM/Ds) + (uT/u4)(DS'4/Ds) - (u'/u4)(DSM4/Ds) = 0. (11)

This may be obtained from equation (9) in the following way:20 set v = 4 in (9)
and multiply by (Uv/U4); then set u = 4 in (9) and multiply by (UTM/U4); then add
these two equations and substitute into (9). Since (11) is antisymmetric in
u and v, it seems at first to comprise six independent equations. However, if we
put , = i, v = 4, we obtain a trivial identity. Thus only three of these equations
are actually independent; the same remark applies to (9). It is therefore necessary
to impose a supplementary condition.
The physical meaning of the supplementary condition is best seen by writing S"'

in rectangular coordinates. Then since T14 is the momentum density in the i direc-
tion, it follows from equation (8) that

S = (S, Soy SZ) = (S23, S3', S'2) (12)
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is the spin angular momentum vector with respect to the representative point

r = (Xl, X2, X3). (13)

Further, for ,u = i, v = 4, the second integral in (8) is zero since the integration ex-
tends over three-dimensional space for constant time, so that X4 and X4 are both
equal to t. We thus obtain

Si4 f (xI - Xi)T44dv = mOu4E?, (14)

where mo is given by (7), and Ei is the position of the center of mass of the particle
with respect to Xi.
The Corinaldesi-Papapetrou (CP) supplementary condition is16

Si4 = 0 (15)

in the rest-frame of the central attracting body, so that Xi is the center of mass
in this coordinate system. On the other hand, Pirani's supplementary condition is'7

Scou = 0. (16)

In the rest-frame of the particle, ui = 0 and us is zero or negligibly small,2' so that
Si4 = 0 and XI is the center of mass in the particle rest-frame. As is well known,22
the position of the center of mass of an object that possesses internal angular mo-
mentum is not a Lorentz-invariant quantity. It follows that the supplementary
condition removes the ambiguity inherent in the choice of the representative
point Xi in terms of which the motion of the spinning test particle is described and
at which the constraining force is applied, by specifying that this point is the center
of mass in one or another coordinate system.

In using the CP condition, it is more convenient to start from equation (11) than
from (9). With the help of (15) and (10), equation (11) becomes

(DSJ/lDs) = r4k (UI/U4) (SikUJ - SJ'Ui). (17)

We now rewrite (17) in terms of the rectangular coordinates (12) and (13), making
use of the standard form (1) of the Schwarzschild metric. To lowest order, which
requires knowledge only of a and Sy in (2), we obtain'6

(dS/dt) = (m/r3) [2S(r *v) + 2v(r. S) - r(v. S) - (3r/r2) (r * v) (r - S)], (18)

where v = dr/dt. It is instructive also to find the analog of (18) when the isot'opic
form of the Schwarzschild metric is used;6 to first order, this metric is

ds2 = (1 - 2m/r)dt2 - (1 + 2m/r)(dr2 + r2d02 + r2 sin2 0 d2'), (19)

and is the same to this order as the metric expressed in Fock's harmonic coordi-
nates.23 Equation (17) then becomes to lowest order

(dS/dt) = (m/r3) [3S(r * v) + v(r * S) - 2r(v. S) ]. (20)

In using the Pirani condition (16), it is more convenient to start from equation
(9) than from (11). We differentiate (16) and substitute into (9) to obtain

(DS"I/Ds) = (uWSIa - u'SPt) (dua/ds- urupFa6). (21)

Since ups = grout, du,,/ds can be expressed in terms of the nongravitational con-
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straining acceleration fy = F/mo by means of equation (6). In doing this, terms of
higher than first order in S-`v on the right side of (21) are neglected. After some
reduction, (21) becomes to this approximation

(DS's7Ds) = (us"Sa - UVS'a)fa. (22)

The components Si4 and f4 may be eliminated from (22) by using the supplementary
condition (16) and the relation f,.ul' = 0. The standard form of the Schwarzschild
metric then gives for the spin equation of motion

(dS/dt) = (3m/r3) [v(r S) - (r/r2) (r*v)(r.S)] + S(v*f)- f(v*S); (23)

the isotropic form leads to

(dS/dt) = (m/r3)[S(r-v) + 2v(r-S) -r(v.S)] + S(v.f) -f(v.S). (24)

Transformation to the Gyroscope Rest-Frame.-The four equations of motion-
(18), (20), (23), and (24)-are quite different from each other, and yet presumably
all describe the same physical system. They may be reconciled by transforming
each to the rest-frame of the gyroscope. Physically, this corresponds to the fact
that measurements on the gyroscope are most readily interpreted as being made
by a co-moving observer, who may then transmit these measurements to the out-
side world. If, for example, the gyroscope is in a satellite, it may be observed by a
human being who travels with it, or by a device which telemeters information to
the earth below. One of the questions that is most important from an observational
point of view is whether or not there is a change in the frequency of rotation of the
gyroscope, since this would be the simplest quantity to measure with precision.
Corinaldesi and Papapetrou16 argued on the basis of equation (18), which is the
only one of the four that they obtained, that since (dS/dt) has a component parallel
to S, its magnitude will change, and hence the rotation frequency might be ex-
pected to change. On the other hand, the four equations predict quite different
values for the change in magnitude of S.
The physical situation is as follows. The co-moving observer (human or other-

wise) measures the rotation frequency by comparison with a standard clock that
is carried along, and interprets this as being the ratio of the magnitude of the angular
momentum to the moment of inertia, both measured in the gyroscope rest4rame.
The moment of inertia is determined by the dimensions of the gyroscope, and hence
by comparison with a standard measuring rod that is also carried along by the
observer. Thus, if we transform S to the co-moving system, we have a consistent
set of observations. As we shall see, it turns out that the magnitude of the trans-
formed angular momentum So is constant. This means that if the dimensions do
not change, the rotation frequency is constant, and the gyroscope behaves like a
clock which can be set to any desired frequency. The frequency will of course ex-
hibit Doppler and gravitational shifts when observed from the outside, just like
that of a more conventional clock. This will occur, for example, if the gyroscope
is in a satellite and its rotation frequency is telemetered to the earth below.
The transformation to the gyroscope rest-frame consists of two parts, a coordi-

nate transformation involving changes of order m/r, and a Lorentz transformation
involving changes of order v2. Since we need work only to first order in m/r
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and in v2, we can deal with the two transformations separately, and combine their
effects later.
The first transformation recognizes the fact that a coordinate length ax' in the

original system corresponds to a proper length as = (-gj) 1125Xi, and that it is this
as that is measured by the standard rod of the co-moving observer. Thus when the
isotropic metric (19) is used, all coordinate lengths are to be multiplied by (1 +
m/r), to first order, to convert them to the co-moving system. From (12), we see
that each component of S transforms like the product of two coordinates, so that
S must be multiplied by (1 + 2m/r) to obtain So, again to first order:

So = (1 + 2m/r)S. (25)

With the standard metric (1) the situation is slightly more complicated. Here,
radial length intervals are to be multiplied by (1 + m/r), and tangential length
intervals are to be left unchanged. It then follows from (12) that the tangential
components of S are to be multiplied by (1 + m/r), and the radial component is to
be left unchanged:

So = S + (m/r)[S - (r/r2)(r-S)]. (26)

The Lorentz transformation is most conveniently written down if v is chosen to
be along one of the rectangular axes, say x:

S012 = yS'2 + vyS24 so23 = S23, So31 = S31 - vYS34 27

S014 = S14, S024 = yS24 + vyS12 S034 = yS34 -vY3; (2)

here, y = (1 -v2)-'/. The CP condition (15) requires that S14 = S24 = S34 = 0,
so that equations (27) become, with the help of (12):

Sox = SX, So, = YSi, So.z = YSz, 28
S014= O So24 = vySZ, So34 = -VySy (2)

Thus, in this case, the component of S parallel to v is left unchanged, but the per-
pendicular components are multiplied by (1 + 1/2v2), to first order. This may be
written in a rotation-covariant manner as follows:

So = S + 1/2[v2S- v(v.S)]. (29)

The Pirani condition (16) requires, when v is along x, that

S14 = 0 S24 = VS12, S34 = -vS31.

Here, effects of order m/r have been neglected, since we are permitted to sepa-
rate the coordinate and Lorentz transformations in lowest order. Equations (27)
then become

Sox = SX, SOy = Y-'Sv, SOz = Y-1SZ, 30
So14 = 0, So24 = 0, S034. ( )

The last three of equations (30) are in agreement with the remark made just after
equation (16), that when the Pirani condition is used, Si4 = 0 and hence Xi is the
center of mass in the gyroscope rest-frame. The first three of equations (30)
show that the component of S parallel to v is left unchanged, while the perpendicular
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components are multiplied by (1- 1/2v2), to first order. In rotation-covariant form
this becomes

SO = S - /2[V2S -v(v-S)I. (31)

Equation (18) was obtained by using the standard form of the Schwarzschild
metric together with the CP supplementary condition. Thus, in order to transform
it to the gyroscope rest-frame we combine the transformations (26) and (29) to first
order:

So = S + (m/r) [S - (r/r2)(r-S)] + 1/2v2S - v(v.S)]. (32)

The time derivative of (32) is

(dSo/dt) = (dS/dt) - (mt/r2)S + (3mr/t4)r(r.S) - (m/r3)v(r.S)-
(m/r3)r(v.S) + vtS - 1/2i(v.S) - 1/2v(V.S). (33)

Here, dots denote time derivatives, and terms of order (m/r) (dS/dt) and v2(dS/dt)
have been neglected in comparison with (dS/dt). Also, the difference between the
differential time intervals dt in the two coordinate systems has been neglected,
since it is of fractional order m/r and v2. Several substitutions can be made on
the right side of equation (33). It is evident that t = (r v)/r and v = (v- i)/V.
The acceleration v can be obtained from the equation of motion (6). Since we
require v only to first order in m/r and v2, spin corrections to (6) cali be neglected
and the Newtonian approximation used:

i = - (m/r3)r + f, (34)

where f = F/mo is the acceleration that arises from the nongravitational constraint.
Finally, (dS/dt) is to be taken from (18). With all these substitutions, equation
(33) becomes

(dSo/dt) = (3m/2r3)[v(r 5S) - r(v S) + S(v f) - 1/2f(v S) - 1/2v(f. S). (35)

Since according to (32), S differs from So only by terms of order m/r and v2, it may
be replaced by So on the right side of (35).
Equation (20), which arises from the isotropic metric and the CP condition,

may be transformed in just the same way. The transformation is the combination
of (25) and (29):

So = S + (2m/r)S + 1/2[v2S- v(v.S)]. (36)

Differentiation of (36), followed by substitution from (20) and (34), again leads
to equation (35).
When the Pirani condition is used, equation (23) with the standard metric must

be transformed by means of (26) and (31), and equation (24) with the isotropic
metric must be transformed by means of (25) and (31). In both cases, the result
analogous to equation (35) is

(dSo/dt) = (3m/2r3) [v(r- S) - r(v- S)] + 1/2v(f * S) - 1/2i(v S) (37)

Again, S may be replaced by So on the right side.
The difference between equations (35) and (37) evidently arises from the differ-

ence between the OP and Pirani supplementary conditions rather than from the
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difference between the standard and isotropic forms of the metric. It is therefore
related to the specification of the representative point (13), at which F is applied,
as being the center of mass in one or another coordinate system. The specification
of this point has no physical significance so long as F = 0, and indeed we note that
equations (35) and (37) agree in this case. However, when F # 0, it will result
in a torque -e X F about the center of mass, where e is the vector position of the
center of mass with respect to the representative point. Since measurements are
to be made by a co-moving observer, such a torque in his coordinate system is
instrumental, and to be avoided by applying any constraining force at the center
of mass in the rest-frame of the gyroscope. This corresponds precisely to the
Pirani supplementary condition. We therefore conclude that (37) gives (dSo/dt) as
measured by a co-moving observer when instrumental torques have been eliminated.
Even when an instrumental torque is present, however, a correction can be made

for it. When the CP supplementary condition is used, the vector e in the gyroscope
rest-frame can be obtained by substituting the S0o4 given by the last three of
equations (28) into equation (14). This gives to first order

Ex = 0, Ev = vSd/mo, EZ = -vSjmo.

Since v is here along x, this may be written in a rotation-covariant manner as

C = -(v X S)/mo.

Thus when the CP condition is used, we must subtract the instrumental torque

-e X F = [(v X S) X F]/mo = S(v.f) - v(f-S)

from the rate of change of the gyroscope angular momentum given by the right
side of (35). When this is done, equations (35) and (37) agree.

Effects of Earth Rotation and Extra-Terrestrial Objects.-Equation (37) gives the
rate of change of angular momentum measured by a co-moving observer when the
central attracting body (the earth) is spherically symmetrical and at rest. The
effect of the axial rotation of the earth can be included by adding off-diagonal space-
time components to the metric tensor. These components were computed by de
Sitter24 and by Lense and Thirring.25 In the isotropic metric, with the vector
angular velocity X of the earth directed along the positive z axis, the additional
components are (xl = x, X2 = y, X3 = Z):

914 = -2ITy/r3, 924 = 2Iwx/r3, g34 = 0, (38)

where I = 2mR2/5 is the moment of inertia of the earth of radius R, assumed to be
homogeneous.

It is not difficult to see that the contribution of (38) to (dS/dt) is the same for the
four spin equations of motion (18), (20), (23), and (24), and that it is not affected
by the transformation to the gyroscope rest-frame. When this contribution is
added to the right side, equation (37) may be written

(dSo/dt) = Q X So, (39)

where

1=/2(f X v) + (3m/2r3)(r X v) + (I/r3) [(3r/r2)(Xr) -], (40)
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Simple order of magnitude estimates based on equations (39) and (40) suffice to
show that the effects of the moon, the sun, and the galaxy are negligible in com-
parison with the effect of the earth.

Interpretation of the Spin Equation of Motion.-The form of equation (39) shows
that the magnitude of the spin angular momentum measured by a co-moving ob-
server is constant. Thus, if the moment of inertia of the gyroscope does not
*change, the rotation frequency remains constant. As remarked above, the gyro-
scope then behaves like a clock that can be set to any desired frequency, and this
frequency will exhibit Doppler and gravitational shifts when observed from outside.

It also follows from equation (39) that if a number of gyroscopes are traveling
together with various magnitudes and directions for their angular momentum vec-
tors, the angles between these vectors, as measured by a co-moving observer, re-
main constant. The spin axes of all the gyroscopes precess with the common vector
angular velocity a given by (40). This precession takes place with respect to the
inertial frame, which is generally believed to be defined by the distant extra-
galactic nebulae, the so-called "fixed stars." Thus, an experimental verification
of equations (39) and (40) will consist in essence of a series of comparisons of the
direction of the spin axis of a gyroscope and particular "fixed stars," made at dif-
ferent times. If the gyroscope is in motion when a comparison is made, the well-
known correction for aberration must be made.26
The first term on the right side of equation (40) is the Thomas precession,27 which

is a special relativity effect. It is independent of gravitation, and is present even
when m is set equal to zero in (34) and (40). The second term is a consequence of
Einstein's theory of gravitation that goes beyond the equivalence principle. Even
though this term involves only the values of a and y in (2), which can be obtained
correctly from the equivalence principle, it also involves the equation of motion of
matter of finite rest mass beyond the Newtonian approximation. It is interesting
to note that if i- is infinitesimally small, so that f given by (34) -is equal to (m/r8)r,
the gravitational precession is three times the Thomas precession, and of the same
sign. The effects produced by this second term in various special cases have been
discussed by several authors, notably de Sitter,28 Fokker,29 and Pirani.'7 How-
ever, in none of these papers is the differential equation (39) or the full expression
(40) for the time-varying precession angular velocity Q exhibited, nor is the rela-
tion between the different possible coordinate systems and supplementary condi-
tions discussed.
The third term on the right side of (40) arises from the rotation of the earth, and

is present even when the gyroscope is at rest. It has the interesting property that
it is parallel to X at the poles (r parallel or antiparallel to a), and antiparallel to X at
the equator (r-perpendicular to a). This is physically plausible if we think of the
moving earth as "dragging" the metric with it to some extent. At the poles, there
is a tendency for the metric to rotate with the earth, and hence to cause the spin to
precess in the direction of rotation of the earth. At the equator, we note particu-
larly that the gravitational field, and hence also the dragging of the metric, falls
off with increasing radial distance. If, then, we imagine the gyroscope oriented
so that its axis is perpendicular to that of the earth, the side of the gyroscope nearest
the earth is dragged with the earth more than the side away from the earth, so
that the spin precesses in the opposite direction to the rotation of the earth. This
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third term is also a consequence of general relativity theory that goes beyond the
equivalence principle, partly because the non-Newtonian equation of motion is re-
quired, and partly because the off-diagonal space-time components of the metric
tensor cannot be inferred from the equivalence principle.

Experimental Consequences.-Two experimental arrangements especially com-
mend themselves: a gyroscope in a satellite, and a gyroscope at rest in a laboratory
fixed with respect to the earth.30
The satellite gyroscope is in free fall, so that f = 0. Then for an orbit in the

earth's equatorial plane, for example,

Q = (3m/2r)oo - (I/r3)a, (41)

where wo = (r X v)/r2 is the instantaneous orbital angular velocity vector of the
gyroscope. If m and r are to be expressed in cgs units, m/r must be replaced by
Gm/c2r, where G is the Newtonian gravitational constant and c is the speed of light.
It is convenient to replace Gm by gR2, where 9 is the acceleration of gravity at the
surface of the earth. Then (41) may be written

Q = (gR/c2) [(3ao/2)(R/r) - (2a/5)(R/r)3], (42)

where gR/c2 = 7.0 X 10-10. It is easily seen that the second term of (42) is never
more than a per cent or two of the first; thus Li is roughly parallel to w even when
the orbit is not equatorial. For a satellite of moderate altitude, the precession is
approximately 6 X 10-9 radians per revolution when the gyroscope spin axis is in
the plane of the orbit.
The laboratory gyroscope is constrained to remain at rest with respect to the

rotating earth, so that

v = X X r, dv/dt = X X v. (43)

The nongravitational constraining acceleration f may then be obtained from equa-
tions (34) and (43), and substituted into (40). The only experimental parameter
in (40) is then the latitude X of the laboratory. It is convenient to write Q in the
form

L = (2gR cos2 X/c2) [1 - (co2R/4g) ]( + (2g sin X/c2W) (( X v) +
(2gR/5c2)(3 sin2 X - 1)0 - (6g sin X/5c2W) (( X v). (44)

The first line represents the first two terms of (40), and the second line the third
term. Each line has been divided into a part proportional to (, which results in a
secular precesion, and a part proportional to Xo X v, which contributes nothing to
the time integral of Q over a whole number of days. Thus the secular precession
arising from the effect of earth rotation on the metric vanishes when sin X = 3-1/2,
or X = 35°16'. Since W22R/4g, the ratio of centripetal to gravitational acceleration,
is very small compared to unity, equation (44) shows that the secular part of LI
is given to good approximation by

Q2S = (4gR/5c2)(1 + cos2 X)W.
If the gyroscope spin axis is perpendicular to the earth's axis, the precession is
approximately 3.5 X 10-9 (1 + cos2 X) radians per day.

In comparing the two experimental arrangements, it should be noted that while
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the secular precessions per revolution are roughly the same, the period of a satellite
of moderate altitude is much shorter than a -day, so that the precession per unit
time of the satellite gyroscope will be about 15 times that of the earth-bound gyro-
scope. Moreover, most of the experimental difficulties that seem to rise with a
high-precision gyroscope, especially instrumental torques, are greatly reduced if
the gyroscope does not have to be supported against gravity. On the other hand,
it is much simpler at present to monitor a gyroscope in the laboratory than in a
satellite.
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